Example 8.13: Gradienl estimation of a conslant mass

Consider the problem of mass estimation for the dynamics

i = mw(l)+ dif)

with w{r) = sin(r), and d(r) is inlerpreted as cither distrbance or measurement noise. The true
mass is assumed 0 be m =2, When the disturbance d(r) = 0, the estimation resulls are shown in
the lefl plot in Figure 8.2]1, [t is seen (hat larper gain cormesponds to faster convergence, as
expected. When the distwrbance is 4(r) = 0.5 s5in{20¢), the estimalion results are shown on the
right plot in Figure 8.21. It is seen thai larger estimation gain leads 1o larger estimation error.
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Figure 8.21 : gradient method, left; without noise, nghc; with noise

The following simple simulation illustrates the behavior of the gradient
estimator in the presence of both parameter variation and measurement noise.



Example 8.3: A first-order plant
Consider the control of the unstable plant
y=y+3u

using the previously desighed adaptive controller. The plani parameters a,= e o 3 are
assumed (o be unknown te the adaptive conroller. The reference madel is chosen (o be

Ay ==du +4ar

re, g =4, b =4, The adapiation gain ¥ is chosen to be equal 0 2. The initial values of both
parameters of the controller are chosen 1o be 0, indicating no a priord knowledge. The initial
conditiens of the plant and the model are both zero,



Example 8.4: simulation of a first-order nonlinear plant
Assume that a noplinear plant is described by (he equation
y=y+ytbu (8.35)

This differs from the unstable plant in Examplz 8.3 in that 2 quadrafic lerm is introduced in the
plant dynamics.

Let us use the same reference modeld, initial parameters, and design parameters as in Example
8.3, For the reference signal +(1) =4, the reswlts are shown in Figure 8.11. It is seen that the
wracking error converges lo zero, but the pacameter errors are only bounded. For the reference
signal 1(r) = 4sin{37), the results are shown in Figure B.12. It is noted that the eracking error and
the parameter evrors for the three parameters all converge (o zero. -

In this example, it is intecesting to note two points. The first point is that a
single sinusoidal component i r{r) allows three parameters to be estimated. The
second point is that the various signals (including & and y) in this system are much
more oscillatory than those in Example 8.3. Let us understand why. The basic reason
is provided by the observation that nonlinearity usually generales more frequencies,
and thus v(t) may contain more sinusoids than r(r). Specifically, in the above example,
with r(r} = 4sin(3 1), the signal vector v converges 1o

v{e) = [r(0) 3.0 fildD)]

where y,.(¢) is the steady-state response and f(f) the corresponding function value,
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Figure 8.11 : Adaptive control of a ficst-order nonlinear system, r(f) = 4
upper lefl: tracking performance
upper right: parameter 3, ; lower left: parameter 4, : lower right: pacameler Ef

Vil = ¥,(1) =4 Asin (31 + )
fos{th =yt = 16AZ5in2(31 + ) = 8 A2( 1 - cos(61 +2¢))

where A and ¢ are the magnitude and phase shift of the reference model at @ =3,
Thus, the signal vector v(t) conlains fwe sinusoids, with f(y) containing a sinusoid at
twice the original frequency. Intuitively, this component at double frequency is the
reason for the convergent estimation of the three parameters and the more oscillatory
behavior of the estimated paramelters.



Example 8.5: A controller for perfect iracking

Consider the plant described by

klp+h,)
y= 5 £ LA (£.45)
F +aplp+ap2
and the reference madel
kip+b.)
Y = nl P Om r {8.46)
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Figure 8.13 : A model-reference conirol system for relative degree |

Let the controller be chosen as shown in Figure 8.13, with the control law being

y+ kr (8.47)

where 2 =ufip + b,.), i £.. 2 is the output of a firse-order filter with input &, and e, , 3, ., £ are
conltroller parameters, If we ake these parameters (0 be

t.t.! =|,?p‘—hm
B Gy T
| = —

ky
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one can slraightforwardly show that the transfer function from the reference input r 1o the plant
output v is
kalP + bpy)
y

- =W tp)
P- '|'Hml.ﬂ +'ﬂm1

Therefore, perfect tracking is achieved with this control law, ie., y(N) =y, () , VI 20,

It is interesting 10 see why 1he closed-loop transfer function can become exacily the same as
that of the reference model, To do this, we noie that the control input in (8.47) is composed of
three paris, The first part in effect replaces the plant 2zero by the reference model zero, since the
iransfer function from &) 0 y (see Figure 8.13) is
_ Pt by, -'cpl.'p-rbp} _ J:P{p+bmj

W =
ul
vooprb, p1+-ﬂ'plp+ﬂ'ﬂ p1+ap-lp+aP1

The second part places the closed-loop poles al the locations of those of the reference model.
This is scen by noting that 1he transfer function from u, 1o y is (Figure 8,13)

W g k{p+ b,
I +"'p.|"wu'|_j pz'flﬂpl +ﬁ|kF}P+{HF-J+ﬂ1kP]

wﬂn'}. =

The third part of the canteal law (k,/k ) r obviously replaces k, , the high frequency gam of the
plant, by k. As a result of the above three pans, the closed-loop system has the desired transfer
funcrion. O

The conttolier structure shown in Figure 8.13 for second-order plants can be
extended 10 any plant with relative degree one. The resulling structure of the contrel
system is shown in Figure 8,14, where £, 6, ,0;" and Eld* represents controller
parameters which lead to perfect tracking when the plant parameters are known.

The structure of this control system can be described as follows. The block for
generating the filter signat @, represents an (n - 1M order dynamics, which can be
described by

®;=Aw; +hu

where @) is an (n—1)x| state vector, A is an (n—1}x(n—1) matrix, and h is a constant
vector such that (A, h) is controllable, The poles of the matrix A are chasen to be the
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Figare 8,14 : A control system with perfect tracking

same as the roots of the polynomial Z,,(p). i.e.,
det(pl - A]=Z,(p) (8.48)

The block for generating the (n—1)x1 vector @, has the same dynamics but with y as
input, i.e.,

ﬁ)2=ﬂ{ﬂ3+hj'

It is straightforward to discuss the controller parameters in Figure 8,14, The scalar
gain k" is defined 10 be
_I;* = k_m
k.f’

and i3 intended to modulate the high-frequency gain of the control system. The vector
8, contains (#—1) parameters which intend to cancel the zeros of the plant. The
vector 0, contains (n—1) parameters which, together with the scalar gain Elﬂ* can
move the poles of the closed-loop control sysiem to the locations of the reference
model poles. Comparing Figure 8.13 and Figure 8.14 will help the reader become
familiar with this structere and the corresponding notations.

As before, the control input in this system is a linear combination of the
reference signal (¢}, the vector signal @, obtained by filtering the control input «, the
signals @, obtained by filiering the plant output y, and the cutput iself. The control
inpul u can thus be written, in terms of the adjustable parameters and the various
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signals, as
Wy =&"r +0,"0, +8;, 0, + 0,y (8.49)

Cormresponding Lo this control [aw and any reference input r(z), the output of the plamt
is

. B(p) = .
we) = H{% wi)=W,r (8.50)

since these parameters result in perfect tracking. At this point, one easily sees the
reason for assuming the plant 1o be minimum-phase: this allows the plant zeros 1o be
canceled by the controller poles.

In the adaptive contro]l problem, the plant paramelers are unknown, and the
tdeal control parameters described above are also unknown. Instead of (8.49), the
control law is chosen o be

u= kir+ 0o + B,()ay +6,(nNy (8.51)

where k(1) , ﬂi(f} v 8-(1} and 8_(¢) are controller parameters to be provided by the
adaptation law,




Example 8.6: Consider the second order plant described by the transfer functon

ko u
¥y= 2—P_
PE¥ Oy Py
ard the reference madel
kor

ymE.—_i_-.—.—..-_-_n——
Pt a,, Pt dys

which are similar to those in Exampie 8.5, but now contain no zepos.
Let us consider the conirol structure shown in Figure 3.16 which 15 a slight medification of

the contreller struciure in Figure 8.13. Note that &, in the fillers in Figure 8.13 has been replaced
by a positive number X, , Of course, the transfer functions W, and W, in Figare 8.16 naw have

relative degree 2.
The clased-lopp transfer function from the reference signal r (o the plam outpul vy is

P+i, k,
2
W, =k DAt W pPapp +ay
} pth, Bup+B; ky
1+ 3
p'l')u.ﬁ'l‘al P+’u0 P +uplp+ap2
kk(p +1,)

=

(p+ 1+ lll)(.ﬂa"' O P+ Ao + k,.[ﬂrﬂ' + )
Therefore, if the controtler parameters a , {3, , 3, , and k are chosen such thal

(Prh, + o) (P24 ayp+a) +kBp+P) =043, 4 agp+a,y)

and
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Figure 8,16 : A model-refercnce contcol system for relative degree 2

-
n
= d

then the closed loop transfer function L becomes identically the same as that of the reference
maodel. Cleatly, such choice of parameters exists and is unigue. a

For general plants of relative degree larger than 1, the same contro) structure as
given in Figure 8.14 is chosen. Note that the order of the filters in the control law is
still (n—1). However, since the model numerator polynomial Z,(p) is of degree
smaller than (n — 1), it is no fonger possible to choose the poles of the filters in the
controller so thatdet[pl —= A]=Z, (p)asin (3.48). Insiead, we now choose

Ap) =Z,{p) L(p) (8.57)

where A(p) =det[pl - A] and A((p) is a Hurwitz polynornial of degree (n — 1 — m).
With this choice, the desired zeros of the reference model can be imposed.

Ler us denote the transfer function of the feedforward part (u/u;) of the
controller by A(p)/(A(p) + C(p)), and that of the feedback part by D(p)fA(p), where
the polynomial C(p) contains the parameters in the vector 8, and the polynomial
D(p) contains &, and the parameters in the vector 8;. Then, the closed-loop transler
function is easily found to be

W kkpzpll{pjzm{p]
P RAP)IMpY+ C(p)) + Kk, 2, D(p)

(8.58)
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The question now is whether in this general case there exist choice of values for

k, 8, ,8; and O, such that the above transfer function becomes exactly the same as

W, (), or equivalently
RP(?L(PH Clp)) +kp2,0(p) = MZPR”,(P] (8.59)
The answer to this question can be obtained from the following lemma:

Lemma 8.2: Let A(p) and B(p) be polynomials of degree ny and ns, respectively. If
A(p) and B(p) are relatively prime, then there exist polynomials M(p) and N(p) such
thar

A(PYM(p) + B(p)N(p) = A™(p) (8.60)
where A*(p) is an arbizrary polynomial.

This [emma can be used straightforwardly to answer our question regarding
(8.39). By regarding R, as A(p) in the lemma, k;Z, as B(F) and Xy(p) Z,R,, as
A"(p). we conclude that there exist polynomials (A(p)+ C(p)) and D{p) such that
(8.59) is satisfied. This implies that a proper choice of the controller parameters

k=k‘ 90-_—90* Bl=0|* Bz=02+

exists 50 that exact model-following is achieved.




Example 8.7; Rohrs's Example

The sometimes destructive consequence of non-parametric uncertainties is clearly shown in the
well-known example by Rohrs, which consists of an adaptive fiest-order control system
containing unmaodeled dynamics and measurement noise. I the adaptive control design, the plant
is assumed 1o have a the following nominal model

H %
o =:Ir:-+»::'.,..,

The reference model has the following SPR function

K __3
pta, p+3

M(p) =



The real plant, however, is assumed to have the transfer function relation

2 229
= [
P+l p2+30p +229

y

This means that the real plant is of third order while the nominal plant is of only first order. The
unmodeled dynamics are thus seen to be 229/(p? + 30p + 229), which are high-frequency but
lighily-damped poles at (— L5 + j) and (— 15 - j).

Besides the unmodeled dynamics, it is assumed that there is some measurement noise n(f) in
the adaptive system. The whole adaptive control system is shown in Figure 8.18. The
measurement noise is assumed o be a(r) = 0.5sin(16.17r).

I e )
173
= nominal _ unmodeled o s
- w [i 2§ 229 1y, _’% y
a5 4 §p+|§§p2+30p+229 +

Figure 8.18 : Adaptive control with unmodeled dynamics and measurement noise

Cormesponding Lo the reference input r(f) = 2, the results of the adaptive control system are shown
in Figure 8.19. It is seen that the output y(f) initially converges to the vicinity of y =2, then
operates with a small oscillatory emror related to the measurement noise, and finally diverges to
infinity. O

In view of the global iracking convergence proven in the absence of non-
parametric uncertainties and the smalf amount of non-parametric uncertainties present
in the above example, the observed instability can seem quite surprising. However,
one can gain some msight into what is going on in the adaptive control system by
examining the parameter estimates in Figure 8.19. It is seen that the parameters drift
slowly as time goes on, and suddenly diverge sharply. The simplest explanation of the
parameter drift problem is that the constant reference input comtains insufficient
parameter information and the parameter adaptation mechanism has difficulty
distinguishing the parameter information from noise. As a result, the parameters drift
in a direction along which the tracking error remains small. Note that even though the
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Figure 8.19 : Instability and parameler drift

tracking error stays at the same leve! when the parameters drift, the poles of the
closed-loop system continuously shift (since the parameters vary very slowly, the
adaptive control system may be regarded as a linear {ime-invariant system with three
poles). When the estimated parameters drift (o the point where the closed-loop poles
enter the right-half complex plane, the whole system becomes unstable. The above
reasoning can be confirmed mathematically.

In general, the following points can be made about parameter drift. Parameter
drift occurs when the signals are not persistently exciting; it is mainly caused by
measurement noise; it does not affect tracking accuracy until instability occurs; it
leads to sudden failure of the adaptive control system (by exciting unmodeled
dynamics).

Parameter drift is a major problem associated with non-parametric uncertainties
(noise and disturbance). But there are possibly other problems. For example, when
the adaptation gain or the reference signal are very large, adaptation becomes fast and
the estimated parameters may be quite oscillatory. If the oscillations get into the
frequency range of unmodeled dypamics, the unmodeled dynamics may be excited
and the parameter adaptation may be based on meaningless signals, possibly leading
to instability of the control system. For parameter oscillation problems, techniques
such as nomalization of sigrals (divide v by | + v v } or the composite adaptation in
section 8.8 can be quite useful.



