
Boundary elements are used to specify nonzero displacements and rotations to
nodes. They are also used to evaluate reactions at rigid and flexible supports. Bound-
ary elements are two-node elements. The line defined by the two nodes specifies the
direction along which the force reaction is evaluated or the displacement is specified.
In the case of moment reaction, the line specifies the axis about which the moment is
evaluated and the rotation is specified.

We consider boundary elements that are used to obtain reaction forces (rigid
boundary elements) or specify translational displacements (displacement boundary ele-
ments) as truss elements with only one nonzero translational stiffness. Boundary ele-
ments used to either evaluate reaction moments or specify rotations behave like
beam elements with only one nonzero stiffness corresponding to the rotational
stiffness about the specified axis.

The elastic boundary elements are used to model flexible supports and to calcu-
late reactions at skewed or inclined boundaries. Consult Reference [9] for more details
about using boundary elements.

d 3.10 Potential Energy Approach to Derive d
Bar Element Equations

We now present the principle of minimum potential energy to derive the bar element
equations. Recall from Section 2.6 that the total potential energy pp was defined as the
sum of the internal strain energy U and the potential energy of the external forces W:

pp ¼ U þW ð3:10:1Þ

To evaluate the strain energy for a bar, we consider only the work done by the
internal forces during deformation. Because we are dealing with a one-dimensional
bar, the internal force doing work is given in Figure 3–25 as sxðDyÞðDzÞ, due only
to normal stress sx. The displacement of the x face of the element is DxðexÞ; the dis-
placement of the xþ Dx face is Dxðex þ dexÞ. The change in displacement is then

Figure 3–24 Free-body diagram of the truss of Figure 3–23
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Dx dex, where dex is the differential change in strain occurring over length Dx. The dif-
ferential internal work (or strain energy) dU is the internal force multiplied by the dis-
placement through which the force moves, given by

dU ¼ sxðDyÞðDzÞðDxÞ dex ð3:10:2Þ

Rearranging and letting the volume of the element approach zero, we obtain, from
Eq. (3.10.2),

dU ¼ sx dex dV ð3:10:3Þ

For the whole bar, we then have

U ¼
ðð

V

ð ð ex
0

sx dex

� �
dV ð3:10:4Þ

Now, for a linear-elastic (Hooke’s law) material as shown in Figure 3–26, we see that
sx ¼ Eex. Hence substituting this relationship into Eq. (3.10.4), integrating with re-
spect to ex, and then resubstituting sx for Eex, we have

U ¼ 1
2

ðð

V

ð
sxex dV ð3:10:5Þ

as the expression for the strain energy for one-dimensional stress.
The potential energy of the external forces, being opposite in sign from the ex-

ternal work expression because the potential energy of external forces is lost when the

Figure 3–25 Internal force in a one-dimensional bar

Figure 3–26 Linear-elastic (Hooke’s law)
material
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work is done by the external forces, is given by

W ¼ �
ðð

V

ð
X̂bû dV �

ðð

S1

T̂xûs dS �
XM
i¼1

f̂ixd̂ix ð3:10:6Þ

where the first, second, and third terms on the right side of Eq. (3.10.6) represent the po-
tential energy of (1) body forces X̂b, typically from the self-weight of the bar (in units of
force per unit volume) moving through displacement function û, (2) surface loading or
traction T̂x, typically from distributed loading acting along the surface of the element
(in units of force per unit surface area) moving through displacements ûs, where ûs are
the displacements occurring over surface S1, and (3) nodal concentrated forces f̂ix
moving through nodal displacements d̂ix. The forces X̂b; T̂x, and f̂ix are considered to
act in the local x̂ direction of the bar as shown in Figure 3–27. In Eqs. (3.10.5) and
(3.10.6), V is the volume of the body and S1 is the part of the surface S on which sur-
face loading acts. For a bar element with two nodes and one degree of freedom per
node, M ¼ 2.

We are now ready to describe the finite element formulation of the bar element
equations by using the principle of minimum potential energy.

The finite element process seeks a minimum in the potential energy within the
constraint of an assumed displacement pattern within each element. The greater the
number of degrees of freedom associated with the element (usually meaning increasing
the number of nodes), the more closely will the solution approximate the true one
and ensure complete equilibrium (provided the true displacement can, in the limit,
be approximated). An approximate finite element solution found by using the stiffness
method will always provide an approximate value of potential energy greater than or
equal to the correct one. This method also results in a structure behavior that is pre-
dicted to be physically stiffer than, or at best to have the same stiffness as, the actual
one. This is explained by the fact that the structure model is allowed to displace only
into shapes defined by the terms of the assumed displacement field within each element
of the structure. The correct shape is usually only approximated by the assumed field,
although the correct shape can be the same as the assumed field. The assumed field
effectively constrains the structure from deforming in its natural manner. This con-
straint effect stiffens the predicted behavior of the structure.

Apply the following steps when using the principle of minimum potential energy
to derive the finite element equations.

1. Formulate an expression for the total potential energy.
2. Assume the displacement pattern to vary with a finite set of
undetermined parameters (here these are the nodal displacements dix),
which are substituted into the expression for total potential energy.

3. Obtain a set of simultaneous equations minimizing the total potential
energy with respect to these nodal parameters. These resulting
equations represent the element equations.

The resulting equations are the approximate (or possibly exact) equilibrium
equations whose solution for the nodal parameters seeks to minimize the potential
energy when back-substituted into the potential energy expression. The preceding
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three steps will now be followed to derive the bar element equations and stiffness
matrix.

Consider the bar element of length L, with constant cross-sectional area A,
shown in Figure 3–27. Using Eqs. (3.10.5) and (3.10.6), we find that the total potential
energy, Eq. (3.10.1), becomes

pp ¼
A

2

ðL

0

sxex dx̂� f̂1xd̂1x � f̂2xd̂2x �
ðð

S1

ûsT̂x dS �
ðð

V

ð
ûX̂b dV ð3:10:7Þ

because A is a constant and variables sx and ex at most vary with x̂.
From Eqs. (3.1.3) and (3.1.4), we have the axial displacement function expressed

in terms of the shape functions and nodal displacements by

û ¼ ½N�fd̂g ûs ¼ ½NS�fd̂g ð3:10:8Þ

½N� ¼ 1� x̂

L

x̂

L

� �
ð3:10:9Þwhere

½NS� is the shape function matrix evaluated over the surface that the distributed sur-
face traction acts and

fd̂g ¼ d̂1x

d̂2x

( )
ð3:10:10Þ

Then, using the strain/displacement relationship ex ¼ dû=dx̂, we can write the axial
strain as

fexg ¼ � 1
L

1

L

� �
fd̂g ð3:10:11Þ

fexg ¼ ½B�fd̂g ð3:10:12Þor

Figure 3–27 General forces acting on
a one-dimensional bar
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where we define

½B� ¼ � 1
L

1

L

� �
ð3:10:13Þ

The axial stress/strain relationship is given by

fsxg ¼ ½D�fexg ð3:10:14Þ

½D� ¼ ½E� ð3:10:15Þwhere

for the one-dimensional stress/strain relationship and E is the modulus of elasticity.
Now, by Eq. (3.10.12), we can express Eq. (3.10.14) as

fsxg ¼ ½D�½B�fd̂g ð3:10:16Þ

Using Eq. (3.10.7) expressed in matrix notation form, we have the total potential
energy given by

pp ¼
A

2

ðL

0

fsxgTfexg dx̂�fd̂gTfPg�
ðð

S1

fûsgTfT̂xg dS�
ðð

V

ð
fûgTfX̂bg dV ð3:10:17Þ

where fPg now represents the concentrated nodal loads and where in general both
sx and ex are column matrices. For proper matrix multiplication, we must place the
transpose on fsxg. Similarly, fûg and fT̂xg in general are column matrices, so for
proper matrix multiplication, fûg is transposed in Eq. (3.10.17).

Using Eqs. (3.10.8), (3.10.12), and (3.10.16) in Eq. (3.10.17), we obtain

pp ¼
A

2

ðL

0

fd̂gT ½B�T ½D�T ½B�fd̂g dx̂� fd̂gTfPg

�
ðð

S1

fd̂gT ½NS�TfT̂xg dS �
ðð

V

ð
fd̂gT ½N�TfX̂bg dV

ð3:10:18Þ

In Eq. (3.10.18), pp is seen to be a function of fd̂g; that is, pp ¼ ppðd̂1x; d̂2xÞ. How-
ever, ½B� and ½D�, Eqs. (3.10.13) and (3.10.15), and the nodal degrees of freedom d̂1x
and d̂2x are not functions of x̂. Therefore, integrating Eq. (3.10.18) with respect to x̂

yields

pp ¼
AL

2
fd̂gT ½B�T ½D�T ½B�fd̂g � fd̂gTf f̂ g ð3:10:19Þ

f f̂ g ¼ fPg þ
ðð

S1

½NS�TfT̂xg dS þ
ðð

V

ð
½N�TfX̂bg dV ð3:10:20Þwhere

From Eq. (3.10.20), we observe three separate types of load contributions from
concentrated nodal forces, surface tractions, and body forces, respectively. We define
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these surface tractions and body-force matrices as

f f̂sg ¼
ðð

S1

½NS�TfT̂xg dS ð3:10:20aÞ

f f̂bg ¼
ðð

V

ð
½N�TfX̂bg dV ð3:10:20bÞ

The expression for f f̂ g given by Eq. (3.10.20) then describes how certain loads
can be considered to best advantage.

Loads calculated by Eqs. (3.10.20a) and (3.10.20b) are called consistent because
they are based on the same shape functions ½N� used to calculate the element stiffness
matrix. The loads calculated by Eq. (3.10.20a) and (3.10.20b) are also statically equiv-
alent to the original loading; that is, both f f̂sg and f f̂bg and the original loads yield the
same resultant force and same moment about an arbitrarily chosen point.

The minimization of pp with respect to each nodal displacement requires that

qpp

qd̂1x
¼ 0 and

qpp

qd̂2x
¼ 0 ð3:10:21Þ

Now we explicitly evaluate pp given by Eq. (3.10.19) to apply Eq. (3.10.21). We define
the following for convenience:

fU �g ¼ fd̂gT ½B�T ½D�T ½B�fd̂g ð3:10:22Þ

Using Eqs. (3.10.10), (3.10.13), and (3.10.15) in Eq. (3.10.22) yields

fU �g ¼ ½d̂1x d̂2x�
� 1

L

1
L

( )
½E� � 1

L

1

L

� �
d̂1x

d̂2x

( )
ð3:10:23Þ

Simplifying Eq. (3.10.23), we obtain

U � ¼ E

L2
ðd̂ 21x � 2d̂1xd̂2x þ d̂ 22xÞ ð3:10:24Þ

Also, the explicit expression for fd̂gTf f̂ g is

fd̂gTf f̂ g ¼ d̂1x f̂1x þ d̂2x f̂2x ð3:10:25Þ

Therefore, using Eqs. (3.10.24) and (3.10.25) in Eq. (3.10.19) and then applying Eqs.
(3.10.21), we obtain

qpp

qd̂1x
¼ AL

2

E

L2
ð2d̂1x � 2d̂2xÞ

� �
� f̂1x ¼ 0 ð3:10:26Þ
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qpp

qd̂2x
¼ AL

2

E

L2
ð�2d̂1x þ 2d̂2xÞ

� �
� f̂2x ¼ 0and

In matrix form, we express Eqs. (3.10.26) as

qpp

qfd̂g
¼ AE

L

1 �1
�1 1

� �
d̂1x

d̂2x

( )
� f̂1x

f̂2x

( )
¼ 0

0

� �
ð3:10:27Þ

or, because f f̂ g ¼ ½k̂�fd̂g, we have the stiffness matrix for the bar element obtained
from Eq. (3.10.27) as

½k̂� ¼ AE

L

1 �1
�1 1

� �
ð3:10:28Þ

As expected, Eq. (3.10.28) is identical to the stiffness matrix obtained in Section 3.1.
Finally, instead of the cumbersome process of explicitly evaluating pp, we can

use the matrix differentiation as given by Eq. (2.6.12) and apply it directly to Eq.
(3.10.19) to obtain

qpp

qfd̂g
¼ AL½B�T ½D�½B�fd̂g � f f̂ g ¼ 0 ð3:10:29Þ

where ½D�T ¼ ½D� has been used in writing Eq. (3.10.29). The result of the evaluation
of AL½B�T ½D�½B� is then equal to ½k̂� given by Eq. (3.10.28). Throughout this text, we
will use this matrix differentiation concept (also see Appendix A), which greatly sim-
plifies the task of evaluating ½k̂�.

To illustrate the use of Eq. (3.10.20a) to evaluate the equivalent nodal loads for a
bar subjected to axial loading traction T̂x, we now solve Example 3.12.

Example 3.12

A bar of length L is subjected to a linearly distributed axial loading that varies from
zero at node 1 to a maximum at node 2 (Figure 3–28). Determine the energy equiva-
lent nodal loads.

Figure 3–28 Element subjected to linearly varying axial load
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Using Eq. (3.10.20a) and shape functions from Eq. (3.10.9), we solve for the
energy equivalent nodal forces of the distributed loading as follows:

f f̂0g ¼
f̂1x

f̂2x

( )
¼
ðð

S1

½N�TfT̂xg dS ¼
ðL

0

1� x̂

L

x̂

L

8>>><
>>>:

9>>>=
>>>;
fCx̂g dx̂ ð3:10:30Þ

¼

Cx̂2

2
� Cx̂3

3L

Cx̂3

3L

8>>><
>>>:

9>>>=
>>>;

L

0

¼

CL2

6

CL2

3

8>>><
>>>:

9>>>=
>>>;

ð3:10:31Þ

where the integration was carried out over the length of the bar, because T̂x is in units
of force/length.

Note that the total load is the area under the load distribution given by

F ¼ 1
2
ðLÞðCLÞ ¼ CL2

2
ð3:10:32Þ

Therefore, comparing Eq. (3.10.31) with (3.10.32), we find that the equivalent nodal
loads for a linearly varying load are

f̂1x ¼
1

3
F ¼ one-third of the total load

ð3:10:33Þ
f̂2x ¼

2

3
F ¼ two-thirds of the total load

In summary, for the simple two-noded bar element subjected to a linearly varying
load (triangular loading), place one-third of the total load at the node where the dis-
tributed loading begins (zero end of the load) and two-thirds of the total load at the
node where the peak value of the distributed load ends. 9

We now illustrate (Example 3.13) a complete solution for a bar subjected to a
surface traction loading.

Example 3.13

For the rod loaded axially as shown in Figure 3–29, determine the axial displacement
and axial stress. Let E ¼ 30
 106 psi, A ¼ 2 in.2, and L ¼ 60 in. Use (a) one and (b)
two elements in the finite element solutions. (In Section 3.11 one-, two-, four-, and
eight-element solutions will be presented from the computer program Algor [9].
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(a) One-element solution (Figure 3–30).

From Eq. (3.10.20a), the distributed load matrix is evaluated as follows:

fF0g ¼
ðL

0

½N�TfTxg dx ð3:10:34Þ

where Tx is a line load in units of pounds per inch and f̂
0
¼ F 0 as x ¼ x̂. Therefore,

using Eq. (3.1.4) for ½N� in Eq. (3.10.34), we obtain

fF0g ¼
ðL

0

1� x

L
x

L

8>><
>>:

9>>=
>>;
f�10xg dx ð3:10:35Þ

F1x

F2x

� �
¼

�10L2

2
þ 10L

2

3

�10L2

3

8>>><
>>>:

9>>>=
>>>;
¼

�10L2

6

�10L2

3

8>>><
>>>:

9>>>=
>>>;
¼

�10ð60Þ2

6

�10ð60Þ2

3

8>>><
>>>:

9>>>=
>>>;

or

F1x ¼ �6000 lb F2x ¼ �12;000 lb ð3:10:36Þor

Using Eq. (3.10.33), we could have determined the same forces at nodes 1 and 2—that
is, one-third of the total load is at node 1 and two-thirds of the total load is at node 2.

Figure 3–29 Rod subjected to triangular
load distribution

Figure 3–30 One-element model
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Using Eq. (3.10.28), we find that the stiffness matrix is given by

kð1Þ ¼ 106 1 �1
�1 1

� �

The element equations are then

106
1 �1
�1 1

� �
d1x

0

� �
¼ �6000

R2x � 12;000

� �
ð3:10:37Þ

Solving Eq. 1 of Eq. (3.10.37), we obtain

d1x ¼ �0:006 in: ð3:10:38Þ

The stress is obtained from Eq. (3.10.14) as

fsxg ¼ ½D�fexg

¼ E½B�fdg

¼ E � 1
L

1

L

� �
d1x

d2x

( )

¼ E
d2x � d1x

L

� �

¼ 30
 106 0þ 0:006
60

� �

¼ 3000 psi ðTÞ ð3:10:39Þ

(b) Two-element solution (Figure 3–31).

We first obtain the element forces. For element 2, we divide the load into a uni-
form part and a triangular part. For the uniform part, half the total uniform load is
placed at each node associated with the element. Therefore, the total uniform part is

ð30 in:Þð�300 lb=in:Þ ¼ �9000 lb

and using Eq. (3.10.33) for the triangular part of the load, we have, for element 2,

f
ð2Þ
2x

f
ð2Þ
3x

( )
¼

�½12 ð9000Þ þ 1
3 ð4500Þ�

�½12 ð9000Þ þ 2
3 ð4500Þ�

( )
¼ �6000 lb
�7500 lb

� �
ð3:10:40Þ

Figure 3–31 Two-element model
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For element 1, the total force is from the triangle-shaped distributed load only and is
given by

1
2 ð30 in:Þð�300 lb=in:Þ ¼ �4500 lb

On the basis of Eq. (3.10.33), this load is separated into nodal forces as shown:

f
ð1Þ
1x

f
ð1Þ
2x

( )
¼

1
3 ð�4500Þ
2
3 ð�4500Þ

( )
¼ �1500 lb
�3000 lb

� �
ð3:10:41Þ

The final nodal force matrix is then

F1x

F2x

F3x

8<
:

9=
; ¼

�1500
�6000� 3000
R3x � 7500

8<
:

9=
; ð3:10:42Þ

The element stiffness matrices are now

kð1Þ ¼ kð2Þ ¼ AE

L=2

1 2

2 3

1 �1
�1 1

� �
¼ ð2
 106Þ

1 2

2 3

1 �1
�1 1

� � ð3:10:43Þ

The assembled global stiffness matrix is

K ¼ ð2
 106Þ
1 �1 0

�1 2 �1
0 �1 1

2
4

3
5 lb
in:

ð3:10:44Þ

The assembled global equations are then

ð2
 106Þ
1 �1 0

�1 2 �1
0 �1 1

2
4

3
5 d1x

d2x
d3x ¼ 0

8<
:

9=
; ¼

�1500
�9000

R3x � 7500

8<
:

9=
; ð3:10:45Þ

where the boundary condition d3x ¼ 0 has been substituted into Eq. (3.10.45). Now,
solving equations 1 and 2 of Eq. (3.10.45), we obtain

d1x ¼ �0:006 in:
ð3:10:46Þ

d2x ¼ �0:00525 in:

The element stresses are as follows:

Element 1

sx ¼ E � 1

30

1

30

� �
d1x ¼ �0:006
d2x ¼ �0:00525

� �

¼ 750 psi ðTÞ ð3:10:47Þ
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Element 2

sx ¼ E � 1

30

1

30

� �
d2x ¼ �0:00525
d3x ¼ 0

( )

¼ 5250 psi ðTÞ ð3:10:48Þ
9

d 3.11 Comparison of Finite Element Solution d
to Exact Solution for Bar

We will now compare the finite element solutions for Example 3.13 using one, two,
four, and eight elements to model the bar element and the exact solution. The exact
solution for displacement is obtained by solving the equation

u ¼ 1

AE

ð x

0

PðxÞ dx ð3:11:1Þ

where, using the following free-body diagram,

PðxÞ ¼ 1
2 xð10xÞ ¼ 5x2 lb ð3:11:2Þwe have

Therefore, substituting Eq. (3.11.2) into Eq. (3.11.1), we have

u ¼ 1

AE

ð x

0

5x2 dx

¼ 5x3

3AE
þ C1 ð3:11:3Þ

Now, applying the boundary condition at x ¼ L, we obtain

uðLÞ ¼ 0 ¼ 5L3

3AE
þ C1

C1 ¼ �
5L3

3AE
ð3:11:4Þor

Substituting Eq. (3.11.4) into Eq. (3.11.3) makes the final expression for displacement

u ¼ 5

3AE
ðx3 � L3Þ ð3:11:5Þ
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Substituting A ¼ 2 in.2, E ¼ 30
 106 psi, and L ¼ 60 in. into Eq. (3.11.5), we obtain

u ¼ 2:778
 10�8x3 � 0:006 ð3:11:6Þ
The exact solution for axial stress is obtained by solving the equation

sðxÞ ¼ PðxÞ
A
¼ 5x2

2 in2
¼ 2:5x2 psi ð3:11:7Þ

Figure 3–32 shows a plot of Eq. (3.11.6) along with the finite element solutions
(part of which were obtained in Example 3.13). Some conclusions from these results
follow.

1. The finite element solutions match the exact solution at the node
points. The reason why these nodal values are correct is that the
element nodal forces were calculated on the basis of being energy-
equivalent to the distributed load based on the assumed linear
displacement field within each element. (For uniform cross-sectional
bars and beams, the nodal degrees of freedom are exact. In general,
computed nodal degrees of freedom are not exact.)

2. Although the node values for displacement match the exact solution,
the values at locations between the nodes are poor using few elements
(see one- and two-element solutions) because we used a linear
displacement function within each element, whereas the exact solution,
Eq. (3.11.6), is a cubic function. However, because we use increasing

Figure 3–32 Comparison of exact and finite element solutions for axial displacement
(along length of bar)
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numbers of elements, the finite element solution converges to the exact
solution (see the four- and eight-element solutions in Figure 3–32).

3. The stress is derived from the slope of the displacement curve as
s ¼ Ee ¼ Eðdu=dxÞ. Therefore, by the finite element solution, because
u is a linear function in each element, axial stress is constant in each
element. It then takes even more elements to model the first derivative
of the displacement function or, equivalently, the axial stress. This is
shown in Figure 3–33, where the best results occur for the eight-
element solution.

4. The best approximation of the stress occurs at the midpoint of the
element, not at the nodes (Figure 3–33). This is because the derivative
of displacement is better predicted between the nodes than at the
nodes.

5. The stress is not continuous across element boundaries. Therefore,
equilibrium is not satisfied across element boundaries. Also, equilib-
rium within each element is, in general, not satisfied. This is shown in
Figure 3–34 for element 1 in the two-element solution and element 1
in the eight-element solution [in the eight-element solution the forces
are obtained from the Algor computer code [9]]. As the number of
elements used increases, the discontinuity in the stress decreases across
element boundaries, and the approximation of equilibrium improves.

Finally, in Figure 3–35, we show the convergence of axial stress at the fixed end
ðx ¼ LÞ as the number of elements increases.

Figure 3–33 Comparison of exact and finite element solutions for axial stress (along
length of bar)
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Figure 3–34 Free-body diagram of element 1 in both two- and eight-element
models, showing that equilibrium is not satisfied

Figure 3–35 Axial stress at fixed end as number of elements increases
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However, if we formulate the problem in a customary general way, as described
in detail in Chapter 4 for beams subjected to distributed loading, we can obtain the
exact stress distribution with any of the models used. That is, letting f̂ ¼ k̂d̂ � f̂

0
,

where f̂
0
is the initial nodal replacement force system of the distributed load on

each element, we subtract the initial replacement force system from the k̂d̂ result.
This yields the nodal forces in each element. For example, considering element 1 of
the two-element model, we have [see also Eqs. (3.10.33) and (3.10.41)]

f̂
0
¼ �1500 lb
�3000 lb

� �

Using f̂ ¼ k̂d̂ � f̂
0
, we obtain

f̂ ¼ 2ð30
 10
6Þ

ð30 in:Þ
1 �1
�1 1

" #
�0:006 in:
�0:00525 in:

( )
�
�1500 lb
�3000 lb

( )

¼
�1500þ 1500
1500þ 3000

( )
¼

0

4500

( )

as the actual nodal forces. Drawing a free-body diagram of element 1, we have

X
Fx ¼ 0: � 1

2 ð300 lb=in:Þð30 in:Þ þ 4500 lb ¼ 0

For other kinds of elements (other than beams), this adjustment is ignored in practice.
The adjustment is less important for plane and solid elements than for beams. Also,
these adjustments are more difficult to formulate for an element of general shape.

d 3.12 Galerkin’s Residual Method and Its Use d
to Derive the One-Dimensional Bar
Element Equations

General Formulation

We developed the bar finite element equations by the direct method in Section 3.1 and
by the potential energy method (one of a number of variational methods) in Section
3.10. In fields other than structural/solid mechanics, it is quite probable that a varia-
tional principle, analogous to the principle of minimum potential energy, for instance,
may not be known or even exist. In some flow problems in fluid mechanics and in
mass transport problems (Chapter 13), we often have only the differential equation
and boundary conditions available. However, the finite element method can still be
applied.
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