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ABSTRACT 
This paper presents a model order reduction (MOR) 

method for modeling and estimation of a first-principles 

electrochemical Lithium-ion battery. The MOR approach 

combines the Galerkin method with coordinate transformation 

and is applied to solve the spherical diffusion problem with 

non-zero flux boundary conditions. The order of the reduced-

order model (ROM) is carefully selected based on analysis in 

the frequency domain. With the reduced-order diffusion model, 

an enhanced single particle model which incorporates the 

electrolyte dynamics is developed and validated against the 

experimental data. 

INTRODUCTION 
Lithium-ion batteries are considered as the state of the art 

for energy storage solution in electric and hybrid vehicles. A 

lingering concern in the Automotive Industry lies in the 

degradation of the capacity and internal resistance due to usage 

and calendar life, which impacts reliability and warranty costs 

[1, 2]. Understanding and predicting the chemical and physical 

processes leading to aging in Li-ion cells is possible through 

multiscale characterization methods and first-principles 

electrochemical models [1, 3-5]. However, "in-situ" 

quantification of such processes on a vehicle is not yet 

achievable due to the absence of direct measurements. Hence, 

control-oriented modeling and model-based estimation are 

indispensable tools to monitor the operation of Li-ion battery 

packs, using the measured current and output voltage. The 

estimation of battery State of Charge (SOC) and State of Health 

(SOH) is essential to monitor the available energy and ensure 

safe operations. Several control-oriented models have been 

developed to predict SOC and SOH in automotive energy 

storage systems [6-9]. While these models have a simple and 

intuitive structure, they do not capture the physical processes 

related to the transport of lithium in the solid and liquid phase, 

which are the foundation to an accurate description of the 

performance and degradation in Li-ion cells.  

Porous Electrode Theory [10] has enabled the design of 

first-principles battery models. These models characterize the 

lithium intercalation in the electrodes and its influence on the 

cell terminal voltage as a diffusion based process. While these 

electrochemical models are able to accurately predict the cell 

terminal voltage as function of current and temperature, they 

require significant calibration effort and computation time, due 

to the presence of large scale coupled partial differential 

equations (PDE) and nonlinear algebraic equations, ultimately 

preventing their direct application from estimation and control 

algorithm design and verification.   

As a consequence, substantial efforts need to be dedicated 

to the development of innovative Model Order Reduction 

(MOR) techniques to obtain reduced order electrochemical 

models derived from first principles and suitable for estimation 

and control applications. Therefore, several approximation 

methods based on model order reduction (MOR) techniques 

have been applied to the diffusion PDEs in the porous electrode 

model. Some research has focused on the approximation of the 

diffusion PDEs in a specific frequency range. Forman et al. [11] 

approximated the frequency response of the electrode surface 

concentration by combining a quasi-linearization and Padé 

approximation. Smith et al. [12] applied residue grouping 

method to approximate the difference of the electrode surface 

concentration to the average concentration. Transfer functions 

were represented by a truncated series of grouped residues with 

similar eigenvalues. Although the models reduced the 

complexity and numerical cost of the DFN model, they do not 
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provide the spatial distributions of concentrations and 

potentials. A good knowledge of the concentration and potential 

distributions could help extend the battery life by avoiding 

operating conditions where irreversible side reaction can occur 

[13,14]. Besides, the lithium distribution in the electrode 

particles can be directly used for SOC estimation [15,16]. 

For approximation of spatial concentration distributions, 

Subramanian et al. [17] developed a reduced order model using 

the polynomial approximation and volume averaging method to 

represent the concentration profile in the solid phase. Proper 

orthogonal decomposition [18] has also been applied to obtain 

ROMs which provides spatial concentration distributions. In 

recent times, the Galerkin Projection method has been applied 

as a MOR tool to approximate the diffusion PDEs describing 

the Lithium transport in the electrolyte solution. For instance, 

Dao et al. [19], Subramanian et al. [20] and Northrop et al. [21] 

used Galerkin method and reduced the PDEs that describe the 

concentration and potential distributions in the liquid phase but 

they did not extend this method to the spherical diffusion PDEs. 

Kehs et al. [22] represented the concentration and potential 

distributions by using the Galerkin projections with a series of 

shifted and normalized Legendre polynomials. However, due to 

the time-dependent boundary conditions in the solid phase, the 

model needs to be manually re-identified by adding the 

additional algebraic constraints prior to the application of the 

method. 

In this scenario, this paper introduces a new MOR 

approach to extend the application of the Galerkin method in 

the solid phase diffusion problem. The time-dependent 

boundary conditions will be automatically satisfied by the 

transformation of coordinate. Besides, a procedure of model 

order selection is established by the analysis in the frequency 

domain.  

The remainder of the paper provides the details of the 

battery model and shows how the model is reduced by the 

combination of Galerkin method and coordinate transformation, 

and the procedure of model order selection. The paper then 

presents some simulations results of the lithium concentration 

and potential distributions in the solid and liquid phases. 

Finally, the predicted voltage by the reduced Galerkin model is 

compared with the experimental data. 

A schematic of the Li-ion cell model is shown in Fig. 1. It 

consists of three domains: the negative electrode, the separator 

and the positive electrode. During charge, lithium ions are 

removed from the positive electrode and deposited into the 

electrolyte solution. Then the ions are transported within the 

liquid region by diffusion and ionic conduction, through the 

separator, to the surface of active material particles in negative 

electrode where they will be stored. Meanwhile, 

electrochemical reactions take place as the lithium ions are 

transported from/into the solid material. During discharge, the 

opposite process repeats. The separator helps to prevent a short 

circuit while allowing ions to pass through. 

DESCRIPTION OF THE LITHIUM-ION CELL MODEL 

 
 

FIGURE 1. SCHEMATIC OF THE ELECTROCHEMICAL 
BATTERY MODEL 

In this work, the model assumes that each electrode is 

represented by a single spherical particle with the assumption 

that the total surface area of the particle is equivalent to the 

overall area of the active material in the porous electrode. 

However, unlike the single-particle model, where the lithium 

concentration profile in the liquid phase is approximated as 

quasi-static and the potential changes are ignored [23], the 

reduced order model developed in this paper allows one to 

obtain the concentration and potential distributions in the whole 

liquid phase.  Therefore, this “enhanced” single particle model 

could maintain sufficient accuracy even at high 

charge/discharge rates. The structure of the model has been 

used previously at the Center for Automotive Research [24.25] 

and is shown in Fig. 2. The parameters used in this study can be 

found in [26]. Besides, each of the electrode open-circuit 

potential curves was obtained from the half-cell experiments in 

[26] as well. 

 

FIGURE 2. BLOCK STRUCTURE OF THE BATTERY MODEL 
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MODEL ORDER REDUCITON OF THE 
ELECTROCHEMICAL MODEL USING GALERKIN 
METHOD  

The Galerkin method approximates the concentration by a 

linear combination of chosen basis functions. Application of 

this method in the electrolyte has already been found in [19], 

but the presence of the non-zero, time-dependent boundary 

conditions in the solid phase poses challenges to the use of 

Galerkin method directly. In this section, a new approach based 

on Galerkin method and coordinate transformation will be 

proposed to obtain a reduced-order solid diffusion model. In 

addition, the complete concentration distribution can also be 

obtained inside the active material particles in the electrodes. 

Li-ion electrolyte phase diffusion 
The Li

+
 concentration in the liquid phase is governed by: 

 
𝜀𝑒

𝜕𝑐𝑒(𝑥, 𝑡)

𝜕𝑡
= 𝐷𝑒

𝜕2𝑐𝑒(𝑥, 𝑡)

𝜕𝑥2
+

1 − 𝑡0
+

𝐹
𝐽(𝑥, 𝑡) (1) 

The concentration can be approximated by directly 

applying Galerkin’s approximation to Eq. (1). First, a trial 

solution is firstly assumed as: 

 

𝑐̂𝑒(𝑥, 𝑡) = 𝑐𝑒(𝑥, 0) + ∑𝑤𝑖(𝑡)𝜙𝑖

𝑁

𝑖=1

(𝑥) (2) 

where  𝜙𝑖(𝑥)  are the basis functions and should be selected 

properly so that the assumed solution also satisfied all boundary 

conditions. 𝑁  is the number of the basis functions. In the 

electrolyte phase, the zero flux boundary conditions are posed 

on the liquid diffusion PDE and a sinusoidal basis function is 

chosen in the form of: 

 
𝜙𝑖(𝑥) = cos (

𝑖𝜋𝑥

𝐿
) (3) 

The time-variant coefficients of the basis functions 𝑤𝑖(𝑡) 

are needed to be solved so that the electrolyte concentration can 

be approximated as a unique linear combination of the basis 

functions. The residual is obtained by substituting the trial 

solution into Eq. (1): 

 
𝑟(𝑥, 𝑡) = 𝜀𝑒,𝑘

𝜕𝑐̂𝑒,𝑘(𝑥, 𝑡)

𝜕𝑡
− 𝐷𝑒,𝑘

𝜕2𝑐̂𝑒,𝑘(𝑥, 𝑡)

𝜕𝑥2

−
1 − 𝑡0

+

𝐹
𝐽(𝑥, 𝑡) 

(4) 

Note that 𝜀𝑒,𝑘, 𝐷𝑒,𝑘  are spatially dependent in different 

domains. Applying Galerkin method to Eq. (4) gives: 

 
〈𝜙𝑖, 𝑟〉 = ∫ 𝜙𝑖(𝑥)𝑟(𝑥, 𝑡)𝑑𝑥

𝐿𝑝

0

+ ∫ 𝜙𝑖(𝑥)𝑟(𝑥, 𝑡)𝑑𝑥
𝐿𝑝+𝐿𝑠𝑒𝑝

𝐿𝑝

+ ∫ 𝜙𝑖(𝑥)𝑟(𝑥, 𝑡)𝑑𝑥 = 0
𝐿𝑐𝑒𝑙𝑙

𝐿𝑝+𝐿𝑠𝑒𝑝

 

(5) 

Equation (5) can be expressed using the matrix form: 

 𝐌𝐰̇ = 𝐊𝐰 + 𝐟 (6) 

where  

 
𝑀𝑖,𝑗 = 𝜀 ∫𝜙𝑖(𝑥)𝜙𝑗(𝑥) 𝑑𝑥 

𝐾𝑖,𝑗 = 𝐷 ∫𝜙″
𝑖
(𝑥)𝜙𝑗(𝑥) 𝑑𝑥 

𝑓𝑖 =
1 − 𝑡0

+

𝐹
∫𝜙𝑖(𝑥)𝐽(𝑥, 𝑡) 𝑑𝑥 

(7) 

Again, the limits of the integrals in Eq. (7) are expected to 

be spatially dependent according to Eq. (5). After solving for 

the time-dependent coefficients 𝐰  at each time point, the 

concentration distribution along the cell thickness in the 

electrolyte can be obtained as: 

 𝑐̂𝑒(𝑥, 𝑡) = 𝑐𝑒(𝑥, 0) + 𝝓𝑻𝐰 (8) 

where 𝝓 = [𝜙1; 𝜙2; … ; 𝜙𝑁]. 

Li-ion solid phase diffusion 
The PDE that describes the lithium concentration in a 

spherical electrode active material particle is given below: 

 𝜕𝑐𝑠,𝑘(𝑟, 𝑡)

𝜕𝑡
= 𝐷𝑠,𝑘

𝜕2𝑐𝑠,𝑘(𝑟, 𝑡)

𝜕𝑟2
+

2𝐷𝑠,𝑘

𝑟

𝜕𝑐𝑠,𝑘(𝑟, 𝑡)

𝜕𝑟
 (9) 

with the boundary conditions: 

 𝜕𝑐𝑠,𝑘(𝑟, 𝑡)

𝜕𝑟
|𝑟=0 = 0 

𝐷𝑠,𝑘

𝜕𝑐𝑠,𝑘(𝑟, 𝑡)

𝜕𝑟
|𝑟=𝑅𝑘

= −
𝐽𝑘(𝑡)

𝑎𝑘𝐹
 

(10) 

where 𝑘 = 𝑝  for the positive electrode and 𝑘 = 𝑛  for the 

negative electrode. The difficulty of applying Galerkin method 

to the solid phase diffusion lies in the time-varying boundary 

condition at 𝑟 = 𝑅𝑘. Because the basis functions 𝜙𝑖(𝑟), such 

as sinusoidal functions in Eq. (3) and Legendre polynomials 

[22], are all time independent, it is unreasonable to expect they 

could automatically satisfy all the boundary conditions in the 

first place. However, this problem could be solved by 

redefining a new variable in the following way: 

 
𝑈(𝑟, 𝑡) = 𝑐𝑠,𝑘(𝑟, 𝑡) +

𝐽𝑘(𝑡)

𝑎𝑘𝐹𝐷𝑠

∙
𝑟2

2𝑅𝑘

 (11) 

Substituting Eq. (11) into Eq. (9) gives: 

 𝜕𝑈(𝑟, 𝑡)

𝜕𝑡
= 𝐷𝑠

𝜕2𝑈(𝑟, 𝑡)

𝜕𝑟2
+

2𝐷𝑠

𝑟

𝜕𝑈(𝑟, 𝑡)

𝜕𝑟

−
3

𝑎𝐹𝑅
𝐽(𝑡) +

𝑟2

2𝑅𝑎𝐹𝐷𝑠

⋅ 𝐽(̇𝑡) 
(12) 

with a new set of boundary conditions: 

 𝜕𝑈(𝑟, 𝑡)

𝜕𝑟
|𝑟=0 =

𝜕𝑐𝑠(𝑟, 𝑡)

𝜕𝑟
|𝑟=0 = 0 

𝜕𝑈(𝑟, 𝑡)

𝜕𝑟
|𝑟=𝑅 =

𝜕𝑐𝑠(𝑟, 𝑡)

𝜕𝑟
|𝑟=𝑅 +

𝐽(𝑡)

𝑎𝐹𝐷
= 0 

(13) 
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The subscript 𝑘 is dropped here for simplicity. Now the 

boundary conditions in Eq. (10) become time independent and 

enable us to use the sinusoidal basis functions again: 

 
𝜙𝑖(𝑟) = cos (

𝑖𝜋𝑟

𝑅
) (14) 

The trial solution 𝑈̂(𝑟, 𝑡) and the residual can be written 

as: 

 

𝑈̂(𝑟, 𝑡) = 𝑐𝑠(𝑟, 0) + ∑ 𝑤𝑖(𝑡)𝜙𝑖

𝑁

𝑖=0

(𝑟) (15) 

 
𝑟(𝑟, 𝑡) =

𝜕𝑈̂(𝑟, 𝑡)

𝜕𝑡
− 𝐷𝑠

𝜕2𝑈̂(𝑟, 𝑡)

𝜕𝑟2
−

2𝐷𝑠

𝑟

𝜕𝑈̂(𝑟, 𝑡)

𝜕𝑟

+
3

𝑎𝐹𝑅
𝐽(𝑡) −

𝑟2

2𝑅𝑎𝐹𝐷𝑠
⋅ 𝐽(̇𝑡) 

(16) 

Applying the Galerkin method and a state space 

representation is obtained: 

 𝐰̇ = 𝐌−𝟏𝐊𝐰 + 𝐌−𝟏𝐟𝐮 + 𝐌−𝟏𝐠𝐮̇ (17) 

where 

 
𝑀𝑖,𝑗 = ∫ 𝜙𝑖(𝑟)𝜙𝑗(𝑟)

𝑅

0

𝑑𝑟 

𝐾𝑖,𝑗 = 𝐷 ∫ 𝜙″
𝑖
(𝑟)𝜙𝑗(𝑟)

𝑅

0

+
2

𝑟
𝜙′

𝑖
(𝑟)𝜙𝑗(𝑟)𝑑𝑟 

𝑓𝑖 = −
3

𝑎𝐹𝑅
∫ 𝜙𝑖(𝑟)

1

𝐴𝐿

𝑅

0

𝑑𝑟 

𝑔𝑖 =
1

2𝑅𝑎𝐹𝐷
∫ 𝜙𝑖(𝑟)𝑟

2
1

𝐴𝐿

𝑅

0

𝑑𝑟 

(18) 

Here 𝐮 is the input current 𝐼. Due to the presence of the 

time derivative of the input, Eq. (17) is not a standard state 

space form. Thus, a new coordinate was introduced here. First 

of all, rewriting Eq. (17) in the following form gives: 

 𝐰̇ = 𝐀𝐰 + 𝐁𝟏𝐮 + 𝐁𝟐𝐮̇ (19) 

where 𝐀 = 𝐌−1𝐊, 𝐁1 = 𝐌−1𝐟 and 𝐁2 = 𝐌−1𝒈  

Then let 

 𝐳 = 𝐰 − 𝐁𝟐𝐮 (20) 

Equation (37) now becomes: 

 𝐳̇ = 𝐀𝐳 + (𝐁𝟏 + 𝐀𝐁𝟐)𝐮 = 𝐀𝐳 + 𝐁𝐮 (21) 

The Li-ion concentration in the solid phase can be obtained 

in the end: 

 
𝑐𝑠(𝑟, 𝑡) = 𝑐𝑠(𝑟, 0) + ∑𝑤𝑖(𝑡)

𝑁

𝑖=0

𝜙𝑖(𝑟) −
𝐽(𝑡)

𝑎𝐹𝐷
∙
𝑟2

2𝑅
 

= 𝑐𝑠(𝑟, 0) + 𝐂𝐳 + 𝐃𝐮 

(22) 

where 

𝐀 =

[
 
 
 
 
 
 −

(0 ∙ 𝜋)2𝐷

𝑅2
+ 𝑎00/2 𝑎01/2 ⋯ 𝑎0𝑛/2

𝑎10 −
(1 ∙ 𝜋)2𝐷

𝑅2
+ 𝑎11 ⋯ 𝑎1𝑛

⋮ ⋮ ⋱ ⋮

𝑎𝑛0 𝑎𝑛1 ⋯ −
(𝑛 ∙ 𝜋)2𝐷

𝑅2
+ 𝑎𝑛𝑛]

 
 
 
 
 
 

 

𝐁𝟏 = −
3

𝑎𝐹𝑅𝐴𝐿
[

1
0
⋮
0

] , 𝐁𝟐 =
2𝑅

𝑎𝐹𝐷𝐴𝐿

[
 
 
 
 
 

1

12
cos(2𝜋)

(1𝜋)2

⋮
cos(𝑛𝜋)

(𝑛𝜋)2 ]
 
 
 
 
 

, 𝐂 = 𝝓𝑻 , 𝐃 =

 𝝓𝑻𝐁𝟐 −
1

𝑎𝐹𝐷𝐴𝐿
∙

𝑟2

2𝑅
 

and 𝑎𝑖𝑗 = −
2𝑗𝜋𝐷(Si(𝑗𝜋−𝑖𝜋)+Si(𝑗𝜋+𝑖𝜋))

𝑅2 . Si(x) is the sine integral 

function and defined as: 

Si(x) = ∫
sin(𝑡)

𝑡

𝑥

0

𝑑𝑡 

Selection of the model order 
Before the implementation of the ROM for simulations, the 

order of ROM should be determined. However, since there is 

no standard procedure for order truncation in ROMs, this 

section attempts to explore a possible approach to select the 

model order for ROMs.  

One way to determine the appropriate order for a ROM is 

to compare each transfer function of the ROMs with the one of 

the PDE-based model. Thus, the truncation order can be 

decided by setting a trade-off between the model order and the 

ROM’s ability to capture the frequency response of the PDE-

based model. In this work, the transfer functions are obtained 

for the electrode surface concentration based on the fact that the 

surface concentration governs many respects of the cell 

behavior.  

 

FIGURE 3. FREQUENCY RESPONSE OF SURFACE 
CONCENTRATION FROM SOLID DIFFUSION PDE AND 

GALERKIN METHOD 
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Figure 3 compares the first to fifth-order Galerkin ROMs 

with the PDE-based model. Results show that all frequency 

responses at different orders agree very well with the PDE-

based model in the low frequency range. Besides, the accuracy 

of the ROMs increases with the growth of number of states. It 

should also be noted that all the Galerkin ROMs will be 

sensitive to high frequency noise, because, the transfer 

functions of the Galerkin models are non-strictly proper 

systems. However, as shown in Fig. 4, 90% of the frequency 

distribution of the battery input profile is within frequencies 

less than 0.4 Hz. Using this information, a fifth order Galerkin 

method model is chosen as qualified candidates for the solid 

phase ROM based on the values of parameters in this work. A 

similar procedure is also applied to the electrolyte diffusion 

phase, and a third order truncation is selected. 

 

FIGURE 4. FREQUENCY CONTENT OF BATTERY CURRENT 
PROFILE USING A FAST FOURIER TRANSFORM 

RESULTS AND DISCUSSION 
Figure 5 compares the concentration distribution obtained 

by the fifth-order Galerkin model and finite difference method 

(FDM). The battery was subjected to part of the United States 

Advanced Battery Consortium (USABC) PHEV dynamic 

charge-depleting duty cycle profile. As shown in Fig. 5, the 

fifth-order reduced Galerkin model agrees very well with the 

FDM in the whole diffusion domain. The maximum error 

between the predicted concentration by the Galerkin model and 

FDM is only 1.56%. 

  

 

FIGURE 5: COMPARISON OF THE CONCENTRATION 
DISTRIBUTION AT THE POSITIVE ELECTRODE PREDICTED 
BY FDM AND GALERKIN METHOD (A) FDM (B) GALERKIN 

METHOD (C) CONCENTRATION DIFFERENCES 

The concentration distribution inside the negative electrode 

during the whole simulation time is shown in Fig. 6. For clarity, 

the comparison of the Galerkin model with the FDM is skipped. 

As shown in Fig. 6, during the charge-depleting duty cycle, 

lithium ions were gradually moving out of the negative 

electrode into positive electrode. Although the input current 

became negative sometimes and the battery was charged for a 

short while, a decreasing trend in the concentration at the 

negative electrode can be observed. In addition, the 

concentration profile along the radius of the active material 

particles displays as a parabolic shape. When the lithium ions 

de-intercalate from the negative electrode particles, the 

concentration would first decrease at the surface of the 

particles. As the diffusion process continues, lithium ions are 

depleted gradually inside the particles and then an overall 

reduction of the concentration can be found in the negative 

electrode.  

Figure 7 shows the lithium concentration in the electrolyte 

and the concentration overpotential caused by the difference of 

concentration between electrode surfaces and the bulk solution. 

The concentration overpotential profile is obtained by 

calculating the potential difference between 𝑥 = 0 and other 

locations along the cell thickness. The potential at 𝑥 = 0 is set 

to be 0 V since the only the potential differences are relevant to 

the calculation of the cell terminal voltage [24]. The results 

show that when the cell is discharged or charged with large 

currents, neither the concentration nor potential changes in the 

electrolyte is negligible. Particularly, when the discharge 

current reaches almost 10 C at t = 340 seconds, the 

concentration overpotential reaches as high as -0.1 V, which 

contributes a lot to the drop of the cell terminal voltage. 
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FIGURE 6. CONCENTRATION DISTRIBUTION IN THE 
NEGATIVE ELECTRODE 

 
 

(a) 

 
(b) 

FIGURE 7. CONCENTRATION AND POTENTIAL 
DISTRIBUTION IN THE ELECTROLYTE PHASE DURING A 
PHEV CHARGE DEPLETING CYCLE: (A) ELECTROLYTE 

CONCENTRATION, (B) ELECTROLYTE POTENTIAL 

The cell voltage is then obtained by combining all the 

above results. Numerical simulations are run in MATLAB on a 

PC with a 2.60 GHz i5-3320M CPU and 4 GB RAM. 

Comparison of predicted voltage by Galerkin model with the 

experimental voltage is shown in Fig. 8. The root-mean-square 

error of the differences between the predicted voltage and 

experimental data is only 2.4 mV. Meanwhile, the simulation 

time for this model is less than 1.5 seconds using 0.01 s time 

steps, which is 300 times faster than the real time. With a high 

level of accuracy as well as computational efficiency, the 

proposed Galerkin method will be suitable for real-time 

simulation, control, and estimation applications.  

 

FIGURE 8. COMPARISON OF PREDICTED VOLTAGE WITH 
EXPERIMENTAL DATA 

Furthermore, the Galerkin Models are also compared with 

the well-established MOR approach by balanced truncation 

(BT). The maximum concentration errors between different 

ROMs and FDM are listed in Table 1. It has been shown that 

the two methods will give comparable RMS error at higher 

truncation orders. BT is viewed as the “gold standard” of MOR 

[27], but it should be mentioned that the PDE needs to be 

discretized before the application of BT, and therefore the 

truncation error is included from the FDM. On the other hand, 

the main advantage of Galerkin method over BT is the fact that 

the resulting ROM is fully physical, for example, the 

parameters of the ROM are directly related to the physical 

constants of the system (described by the PDEs). This enables 

one to conduct state and parameter estimation directly on the 

ROM. Form the computational standpoint, the computation cost 

for BT method is much higher, especially for very large 

systems since this method requires the diagonalization of the 

controllability and observability Gramians. 

TABLE 1. MAXIMUM CONCENTRATION ERROR BETWEEN 
DIFFERENT ROMS AND FDM 

Maximum error between ROMs and FDM (%) 

Model order Balanced truncation Galerkin method 

1st order 20.1% 12.1% 

2nd order 10.3% 5.5% 

3rd order 5.2% 3.1% 

4th order 2.1% 2.0% 

5th order 1.1% 1.1% 

CONCLUSIONS 
    A new MOR approach based on Galerkin method and 

coordinate transformation is proposed in this paper. This 

approach has the advantage of reducing the number of diffusion 

states greatly and predicting accurate concentration profiles at 

the same time. The model order truncation is determined by 
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analysis in the frequency domain. The resulting concentration 

distribution is compared with the one obtained by the FDM and 

the predicted cell voltage is validated against the experimental 

data. The RMS error is only 2.4 mV and the simulation time 

turns out to be 300 times faster than the real time. 
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