
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/342278914

Formulation of local numerical methods in linear elasticity

Article  in  Multidiscipline Modeling in Materials and Structures · June 2020

DOI: 10.1108/MMMS-05-2018-0094

CITATION

1
READS

225

3 authors:

Tiago da Silva Oliveira

Instituto de Educação Superior de Brasília

19 PUBLICATIONS   49 CITATIONS   

SEE PROFILE

Wilber Vélez

University of Antioquia

13 PUBLICATIONS   31 CITATIONS   

SEE PROFILE

Artur Portela

University of Brasília

58 PUBLICATIONS   1,441 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Artur Portela on 20 January 2021.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/342278914_Formulation_of_local_numerical_methods_in_linear_elasticity?enrichId=rgreq-e3299a9eb8ebfd36466ca8920b3c20bd-XXX&enrichSource=Y292ZXJQYWdlOzM0MjI3ODkxNDtBUzo5ODIwMDE4ODg4MDQ4NjZAMTYxMTEzODkwMzgxMQ%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/342278914_Formulation_of_local_numerical_methods_in_linear_elasticity?enrichId=rgreq-e3299a9eb8ebfd36466ca8920b3c20bd-XXX&enrichSource=Y292ZXJQYWdlOzM0MjI3ODkxNDtBUzo5ODIwMDE4ODg4MDQ4NjZAMTYxMTEzODkwMzgxMQ%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-e3299a9eb8ebfd36466ca8920b3c20bd-XXX&enrichSource=Y292ZXJQYWdlOzM0MjI3ODkxNDtBUzo5ODIwMDE4ODg4MDQ4NjZAMTYxMTEzODkwMzgxMQ%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Tiago-Da-Silva-Oliveira?enrichId=rgreq-e3299a9eb8ebfd36466ca8920b3c20bd-XXX&enrichSource=Y292ZXJQYWdlOzM0MjI3ODkxNDtBUzo5ODIwMDE4ODg4MDQ4NjZAMTYxMTEzODkwMzgxMQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Tiago-Da-Silva-Oliveira?enrichId=rgreq-e3299a9eb8ebfd36466ca8920b3c20bd-XXX&enrichSource=Y292ZXJQYWdlOzM0MjI3ODkxNDtBUzo5ODIwMDE4ODg4MDQ4NjZAMTYxMTEzODkwMzgxMQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Instituto_de_Educacao_Superior_de_Brasilia?enrichId=rgreq-e3299a9eb8ebfd36466ca8920b3c20bd-XXX&enrichSource=Y292ZXJQYWdlOzM0MjI3ODkxNDtBUzo5ODIwMDE4ODg4MDQ4NjZAMTYxMTEzODkwMzgxMQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Tiago-Da-Silva-Oliveira?enrichId=rgreq-e3299a9eb8ebfd36466ca8920b3c20bd-XXX&enrichSource=Y292ZXJQYWdlOzM0MjI3ODkxNDtBUzo5ODIwMDE4ODg4MDQ4NjZAMTYxMTEzODkwMzgxMQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Wilber-Velez?enrichId=rgreq-e3299a9eb8ebfd36466ca8920b3c20bd-XXX&enrichSource=Y292ZXJQYWdlOzM0MjI3ODkxNDtBUzo5ODIwMDE4ODg4MDQ4NjZAMTYxMTEzODkwMzgxMQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Wilber-Velez?enrichId=rgreq-e3299a9eb8ebfd36466ca8920b3c20bd-XXX&enrichSource=Y292ZXJQYWdlOzM0MjI3ODkxNDtBUzo5ODIwMDE4ODg4MDQ4NjZAMTYxMTEzODkwMzgxMQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Antioquia?enrichId=rgreq-e3299a9eb8ebfd36466ca8920b3c20bd-XXX&enrichSource=Y292ZXJQYWdlOzM0MjI3ODkxNDtBUzo5ODIwMDE4ODg4MDQ4NjZAMTYxMTEzODkwMzgxMQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Wilber-Velez?enrichId=rgreq-e3299a9eb8ebfd36466ca8920b3c20bd-XXX&enrichSource=Y292ZXJQYWdlOzM0MjI3ODkxNDtBUzo5ODIwMDE4ODg4MDQ4NjZAMTYxMTEzODkwMzgxMQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Artur-Portela?enrichId=rgreq-e3299a9eb8ebfd36466ca8920b3c20bd-XXX&enrichSource=Y292ZXJQYWdlOzM0MjI3ODkxNDtBUzo5ODIwMDE4ODg4MDQ4NjZAMTYxMTEzODkwMzgxMQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Artur-Portela?enrichId=rgreq-e3299a9eb8ebfd36466ca8920b3c20bd-XXX&enrichSource=Y292ZXJQYWdlOzM0MjI3ODkxNDtBUzo5ODIwMDE4ODg4MDQ4NjZAMTYxMTEzODkwMzgxMQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University-of-Brasilia?enrichId=rgreq-e3299a9eb8ebfd36466ca8920b3c20bd-XXX&enrichSource=Y292ZXJQYWdlOzM0MjI3ODkxNDtBUzo5ODIwMDE4ODg4MDQ4NjZAMTYxMTEzODkwMzgxMQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Artur-Portela?enrichId=rgreq-e3299a9eb8ebfd36466ca8920b3c20bd-XXX&enrichSource=Y292ZXJQYWdlOzM0MjI3ODkxNDtBUzo5ODIwMDE4ODg4MDQ4NjZAMTYxMTEzODkwMzgxMQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Artur-Portela?enrichId=rgreq-e3299a9eb8ebfd36466ca8920b3c20bd-XXX&enrichSource=Y292ZXJQYWdlOzM0MjI3ODkxNDtBUzo5ODIwMDE4ODg4MDQ4NjZAMTYxMTEzODkwMzgxMQ%3D%3D&el=1_x_10&_esc=publicationCoverPdf


Formulation of local numerical
methods in linear elasticity

Tiago Oliveira, Wilber V�elez and Artur Portela
Department of Civil Engineering, University of Brasilia, Brasilia, Brazil

Abstract

Purpose – This paper is concerned with new formulations of local meshfree and finite element numerical
methods, for the solution of two-dimensional problems in linear elasticity.
Design/methodology/approach – In the local domain, assigned to each node of a discretization, the work
theorem establishes an energy relationship between a statically admissible stress field and an independent
kinematically admissible strain field. This relationship, derived as a weighted residual weak form, is expressed
as an integral local form. Based on the independence of the stress and strain fields, this local form of the work
theorem is kinematically formulatedwith a simple rigid-body displacement to be applied by local meshfree and
finite element numerical methods. The main feature of this paper is the use of a linearly integrated local form
that implements a quite simple algorithm with no further integration required.
Findings –The reduced integration, performed by this linearly integrated formulation, plays a key role in the
behavior of local numericalmethods, since it implies a reduction of the nodal stiffnesswhich, in turn, leads to an
increase of the solution accuracy and, which is most important, presents no instabilities, unlike nodal
integration methods without stabilization. As a consequence of using such a convenient linearly integrated
local form, the derived meshfree and finite element numerical methods become fast and accurate, which is a
feature of paramount importance, as far as computational efficiency of numerical methods is concerned. Three
benchmark problemswere analyzedwith these techniques, in order to assess the accuracy and efficiency of the
new integrated local formulations of meshfree and finite element numerical methods. The results obtained in
this work are in perfect agreementwith those of the available analytical solutions and, furthermore, outperform
the computational efficiency of other methods. Thus, the accuracy and efficiency of the local numerical
methods presented in this paper make this a very reliable and robust formulation.
Originality/value – Presentation of a new local mesh-free numerical method. Themethod, linearly integrated
along the boundary of the local domain, implements an algorithm with no further integration required. The
method is absolutely reliable, with remarkably-accurate results. The method is quite robust, with extremely-
fast computations.

Keywords Work theorem, Local weak form, Local mesh-less method, Local meshfree method, Local finite

element method, Local formulation

Paper type Research paper

1. Introduction
The main feature of local meshfree and finite element numerical methods is the enforcement
of a solution paradigm defined by a node-by-node calculation, to generate the rows of the
global system of equations of the body’s discretization.

The work theorem has been postulated as a unifying basis in the formulation of numerical
methods in continuummechanics, as early reported by Portela (1981) andBrebbia et al. (1985).
Recently, the work theorem was applied in the formulation of local meshfree numerical
methods, in the set of kinematically admissible strain fields, as reported by Oliveira and
Portela (2016). This paper presents a new linearly integrated local form of the work theorem,
kinematically formulated, which leads to a point–wise discrete form of equilibrium of
tractions, of the local domain associated to each node.

Meshfree numerical methods achieved a remarkable progress over the past few years, see
Chen et al. (2017), for a recent review. The essential feature of these methods is that they
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perform the discretization of the problem domain and boundaries with a set of scattered field
nodes that do not require any mesh for the approximation of the field variables.

Smoothed particle hydrodynamics (SPH), presented by Lucy (1977) and Gingold and
Monaghan (1977), is one of the earliest meshfree methods applied to solve problems in
astrophysics. Libersky et al. (1993) were the first to apply SPH in solid mechanics. SPH is
based on a strong-form formulation of the weighted residual method, with a Lagrangian
description.

The collocation method is also based in the weighted residual strong-form formulation.
Typical meshfree collocation methods were published by Kansa (1990); Wu (1992); Zhang
et al. (2001); Liu et al. (2002a); Onate et al. (1996); Lee and Yoon (2004) and Jamil and Ng (2013).
Collocation methods have some attractive advantages over other meshfree methods, as they
implement a simple algorithm, with no integration required. Despite these advantages,
collocation methods tend to be inaccurate and unstable, due to the ill-conditioned system of
equations.

Other meshfree methods are based on a weighted residual weak-form formulation, which
derives the system of algebraic equations through a process of numerical integration using
background cells constructed in the problem’s domain. The reproducing kernel particle
method (RKPM), presented by Liu et al. (1995), and the element-free Galerkin (EFG) method,
presented by Belytschko et al. (1994), were the first weak-form meshfree methods applied in
solid mechanics. Melenk and Babuska (1996) presented the partition of unity finite element
method (PUFEM). Strouboulis et al. (2000) presented the generalized finite element method
(GFEM) and pointed out that different partition of unities can be used for the usual
approximation and the enrichment.

All these weak-form meshfree methods require the use of a background mesh for
integration of the weighted residual weak form over the global problem’s domain, and
therefore, they are not truly meshfree methods. To overcome this difficulty, a class of
meshfree methods based on local weighted residual weak forms, such as the meshfree local
Petrov–Galerkin (MLPG) method presented by Atluri and Zhu (1998) to Atluri and Shen
(2002), the local point interpolation method (LPIM) presented by Liu and Gu (2001) and the
local radial point interpolation method (LRPIM) presented by Liu et al. (2002b), have been
developed. The main feature of the popular MLPG method is that local weak forms are
used for integration on local domains, rather than global weak forms and consequently
the method does not require the use of a background global mesh, but only local
background cells.

In some particular applications, local meshfree methods exhibit excellent performance.
Despite of their performance, local meshfree methods have not succeeded in replacing the
standard displacement assumed finite element method (FEM), in general applications.

It is well known that the global formulation of the standard FEM considers a solution
paradigm that implements an element-by-element stiffness calculation, which is assembled
into the global stiffnessmatrix. Thismethod of generating the final system of equations is not
suitable for the analysis processing in parallel environments. Furthermore, the mesh
generation process often becomes a serious bottleneck in large-scale parallel computing,
especially when the problem under analysis requires frequentmesh refinement, as in the case,
for instance, of moving boundary, crack propagation or large deformation problems. In order
to overcome this difficulty, various FEM-based meshfree methods have been proposed, in
which finite elements are employed for discretization of the governing equation but are not
given explicitly. This is the case of the generalized finite element method GFEM (Melenk,
1995), the partition of unity finite element method PUFEM (Melenk and Babuska, 1996), the
manifold method presented by Shi (1991), the voxel finite element method presented by
Hollister and Kikuchi (1994), the extended finite element method X-FEM (Belytschko and
Black, 1999), the finite cover method presented by Jin and Suzuki (2000) and the overlapping
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finite element method presented by Zhang and Bathe (2017) which are denominated as FEM-
based meshfree methods.

Therefore, there is still a clear need for an alternativemodeling strategy, directly suited for
the analysis processing in parallel environments. In order to fulfill this need, this paper
presents new local formulations of FEM, which consider a solution paradigm based on a
node-by-node calculation, to generate the respective rows of the global system of equations.
The non-zero components of the global matrix in the rows of a node correspond to the
components derived from the nodes of the local domain of that node. In this case, the analysis
processing can easily be parallelized, in terms of nodes, due to the independence of the nodal
equations. Nevertheless the final system of equations, obtained by the node-by-node solution
paradigm, is equivalent to that obtained by the element-by-element solution paradigm of the
standard FEM. Furthermore, in local formulations of FEM, the independence of nodal
equations allows using of enrichment of a particular nodal stiffness matrix, in the manner of
XFEM, without increasing the nodal degrees of freedom.

A linearly integrated local form that represents a point–wise discrete form of equilibrium
of tractions is presented in this paper. The reduced integration performed by this local
formulation induces a reduction of the nodal stiffness which, in turn, has the desirable effect
of increasing the solution accuracy and, what is most important, presents no instabilities at
all, unlike nodal integration methods without stabilization.

The issue of numerical stability is quite significant when developing numerical methods.
In the standard FEM, elements with a reduced number of integration points are routinely
employed because they are computationally very effective and avoid locking problems of
fully integrated elements. As a side effect, such reduced integrated elements are susceptible to
spurious singular modes, so-called hourglass modes, which are zero-energy modes in the
sense that the element deforms without an associated increase of the elastic energy. These
spurious modes, generated by a reduced number of integration points, can be prevented
through stabilization techniques. Zienkiewicz and Taylor (1983) and Bathe (2014) provide
additional information on this concept.

The reduced integration is the main source of the numerical instability of some meshfree
methods, leading to unstable hourglass deformation and zero energy modes. This is the case
of the EFG method, see Beissel and Belytschko (1996), and the meshfree particle method, as
reported by Belytschko et al. (2000). Nodal integration, in meshfree methods without
stabilization, leads to instabilities due to the fact that each node is associated with a support
domain, where integrations are carried out, to compute the nodal stiffness. This implies that
each integration domain is associated with only one integration point, that is the node and
hence, when only one integration point is considered for higher order functions, other than
constant strain, the nodal integration causes instabilities. In contrast, the new integrated
numerical methods presented in this paper consider, in the case of the meshfree method, a
total of four integration points to compute the stiffness associated to each local node which,
therefore, prevents the generation of spurious zero-energy modes, unlike nodal integration
methods without stabilization. In order to overcome solution instabilities that are present in
direct nodal integration, Taylor series expansions have been used, to serve as stabilization
terms, as presented, respectively by Liu et al. (1985), for FEM, and by Liu et al. (1996) and Liu
et al. (2007), for meshfree methods. While stable, the drawback of this stabilization technique
is that it requires the calculation of high-order derivatives.

Therefore, there is still a clear need for an alternative modeling strategy that completely
avoids all the issues associated with nodal integration. To fulfill such need, this paper
presents a linearly integrated local meshfree numerical method.

The paper is organized as follows. The structural modeling is presented in Section 2,
followed by the kinematic formulations in Section 3 and the modeling strategy in Section 4.
Section 5 presents the local meshfree methods, while the local finite element methods are
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presented in Section 6. Section 7 presents some numerical results, obtained for three standard
benchmark problems, illustrating the accuracy, efficiency and robustness of the strategies
adopted in the analysis. Finally, Section 8 presents the concluding remarks which include
future developments.

2. Structural modeling
Let U be the domain of a structural body and Γ its boundary subdivided in Γu and Γt, with
Γ ¼ Γu∪Γt, as represented in Figure 1. The general fundamental boundary value problem of
linear elastostatics aims to determine the distribution of stresses σ, strains ε and
displacements u, throughout the body, when it has constrained displacements �u, on Γu and
it is loaded by an external system of distributed surface and body forces with densities
denoted, respectively by �t, on Γt and b, in U.

The solution of these problem is a totally admissible elastic field that simultaneously
satisfies the kinematic admissibility of the strains and the static admissibility of the stresses.
Assuming that this solution exists, it can be shown that it is unique, provided linearity and
stability of the material are admitted. Such is the Kirchhoff’s theorem, on the uniqueness of
solutions of the elastostatics boundary value problem, see Kirchhoff (1859). For the sake of
generality, the solution of the posed problem is derived through the work theorem.

In the body’s domain U consider a statically admissible stress field σ, which is any stress
field that satisfies the equilibrium with the system of applied external forces which therefore
satisfies

LTσ þ b ¼ 0; (2.1)

in the domain U, with boundary conditions

t ¼ nσ ¼ �t; (2.2)

on the static boundaryΓt, in which L is amatrix differential operator; t is the vector of traction
components; t is the vector of the prescribed tractions and n is thematrix of the components of
the unit outward normal to the boundary.

Note(s): The work theorem is defined in an arbitrary domain Ω Q ∈ Ω ∪ Γ, assigned to a reference point 
Q ∈ ΩQ, with boundary ΓQ = ΓQi ∪ ΓQt ∪ ΓQu, in which ΓQi is the interior local boundary, and ΓQt and ΓQu 

are local boundaries that share the global boundaries, respectively the static boundary Γt and the kinematic
u; points P and R, have arbitrary local domains, respectively Ω P and ΩR boundary Γ

Figure 1.
Representation of the
body’s domain U, with
boundary Γ 5 Γu ∪ Γt

MMMS



2.1 Local domain
In the domainU consider an arbitrary local domainUQ, assigned to a reference pointQ∈UQ,
with local boundary ΓQ 5 ΓQi ∪ ΓQt ∪ ΓQu, in which ΓQi is the interior local boundary, while
ΓQt and ΓQu are local boundaries that share the global boundaries, respectively the static
boundary Γt and the kinematic boundary Γu, as represented in Figure 1. The work theorem
will be used as a local form that is valid in the arbitrary local domain UQ. Due to its
arbitrariness, this local domain UQ ∪ ΓQ ∈ U ∪ Γ can be overlapping with other similar sub-
domains that can be defined in the body.

2.2 The work theorem
The work theorem establishes an energy relationship, valid in an arbitrary local domain
UQ ∈ U, between two independent elastic fields that can be defined in the body which are,
respectively, a statically admissible stress field that satisfies equilibrium with a system of
external forces, and a kinematically admissible strain field that satisfies the compatibility
with a set of constrained displacements. Derived as a weighted residual statement, see
Oliveira and Portela (2016), the work theorem is expressed, in the local domain UQ, as an
integral form written compactly asZ

ΓQ

tTu*dΓþ
Z
ΓQ

tTu*dΩ ¼
Z
ΓQ

σTε* dΩ (2.3)

inwhich the stress field σ and the strain field ε* are not linked by any constitutive relationship
and therefore, they are independent of each other, see Oliveira and Portela (2016). The
statically admissible stress field σ can be any stress field that is in equilibrium with the
system of applied external forces, therefore satisfying equations (2.1) and (2.2), which is not
necessarily the stress field that the system of applied external forces actually introduces in
the body. The kinematically admissible strain field ε* can be any strain field defined in the
body, generated by continuous displacements u* with small derivatives, compatible with an
arbitrary set of constraints specified on the kinematic boundary, which is not necessarily the
strain field that actually settles in the body. Finally, the local domainUQ is any arbitrary sub-
domain of the body, associated to the reference pointQ, as represented in Figure 1, where the
independent fields σ and ε* are defined.

3. Kinematic formulations
Kinematic formulations consider, in the work theorem, a particular and convenient
specification of the kinematically admissible strain field, leading thus to an equation of
mechanical equilibrium that is used to generate the stiffness matrix of the numerical model.

3.1 Rigid-body displacement formulation
Bearing in mind the essential feature of the work theorem, which is the complete
independence of the stress field σ and the strain field ε*, the strain field can be conveniently
defined by a rigid-body displacement that can be defined as

u�ðxÞ ¼ c; (3.1)

where c is a constant vector that conveniently leads to null strains that is

ε*ðxÞ ¼ 0: (3.2)
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3.1.1 Local form. When the kinematically admissible strain field generated by the arbitrary
rigid body displacement (3.1) is considered, the local form of the work theorem, equation (2.3),
simply leads to the equation Z

ΓQ−ΓQt

t dΓþ
Z
ΓQt

�t dΓþ
Z
UQ

b dΩ ¼ 0 (3.3)

which states an integral form of mechanical equilibrium, of tractions and body forces, in the
local domainUQ. This equation expresses the local version of the basic Euler–Cauchy stress
principle that is sometimes referred to as the defining principle of continuum mechanics
(Truesdell and Toupin, 1960).

3.2 Virtual displacement formulation
Consider a kinematically admissible strain field generated by a virtual displacement, defined
as an arbitrary variation of the actual displacement field, represented as

u* ¼ δu: (3.4)

The assumed arbitrary variation of the actual displacement field vanishes on the kinematic
boundary ΓQu, where the displacements of the problem are specified and therefore cannot be
varied. The corresponding virtual strain generated by this virtual displacement can be
represented as

ε* ¼ δε: (3.5)

3.2.1 Local form.When the kinematically admissible strain field of equations (3.4) and (3.5) is
introduced in equation (2.3) of the work theorem, the following local form of virtual work is
obtained Z

ΓQ

tTδu dΓþ
Z
UQ

bTδu dΩ ¼
Z
UQ

σTδε dΩ (3.6)

which corresponds to the local form of the virtual displacement theorem.
In this paper, the local form of the virtual displacement formulation of the work theorem,

equation (3.6), will be used only to set up a relationship between local formulations and the
global formulation of the standard displacement assumed FEM.

4. Modeling strategy
Different formulations of numerical methods, which include meshfree and finite element
methods, can be simply defined through the application of the work theorem, along with a
proper and convenient kinematic formulation, in order to derive the equilibrium equations
that are used to generate the stiffness matrix of each numerical model.

4.1 Defining the strain field
The kinematic formulation of the work theorem is carried out through the specification of an
appropriate kinematically admissible strain field ε*, as presented in Section 3. This paper
considers the arbitrary rigid-body displacement formulation that leads to the local
equilibrium equations (3.3), as well as the virtual displacement formulation that leads to
the local equilibrium equations (3.6).
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4.2 Defining the stress field
The modeling strategy, adopted to solve the actual elastic problem, considers that the stress
field σ, required to satisfy the equilibrium with a system of external forces, is assumed as the
stress field that actually settles in the body, when it is loaded by the actual system of external
distributed surface and body forces, with the actual displacement constraints. Recall that the
elastic field that actually settles in the body is the unique fully admissible elastic field that
satisfies the given problem. Therefore, besides satisfying static admissibility, through
equations (2.1) and (2.2), that is the same as satisfying equilibrium through equations (3.3) and
(3.6) generated by the weak form (2.3) of the work theorem, this unique totally admissible
elastic field also satisfies kinematic admissibility defined as

ε ¼ Lu: (4.1)

in the domain U, with boundary conditions

u ¼ �u; (4.2)

on the kinematic boundary Γu, in which the displacement u is assumed continuous with small
derivatives, in order to allow for geometrical linearity of the strain field ε. Hence, equation
(4.2), which specifies the constraints of the actual displacements, must be enforced in any
numerical model, in order to provide a unique solution of the elastic problem.

For the sake of simplicity, this paper considers the formulation of meshfree and finite
element numerical methods, in the absence of body forces. Consequently, the equations of
equilibrium are always defined only on the boundary of the local domain.

5. Local meshfree numerical methods
The essential feature ofmeshfree numerical methods is that they perform the discretization of
the problem domain and boundaries with a set of scattered field nodes that do not require any
mesh for the approximation of the field variables. The moving least-squares (MLS)
approximation is used in this paper. The basic MLS meshfree terminology, introduced by
Atluri and Zhu (2000), along with a summary of the essential features of the MLS
approximation, can be seen in Oliveira and Portela (2016).

In a meshfree discretization, each node is associated with its local domain, as
schematically represented in Figure 2. In general, this local domain is a circular or
rectangular region, centered at the respective node, where the rigid body displacement
formulation of the work theorem is defined as a local form of mechanical equilibrium.

The local character of the MLS approximation is a direct consequence of the compact
support of each node, where the respective shape functions are defined. Circular or
rectangular local compact supports, centered at each node, can be used. The size of the
compact support, in turn, sets out, in a neighborhood of a sampling point, the respective
domain of definition of the MLS approximation at this point, as schematically represented in
Figure 3.

The definition domain contains all the nodes whoseMLS shape functions do not vanish at
this sampling point. Therefore, the domain of influence of each node is the union of the MLS
domains of definition of all points in the local domain of the node.

Finally, local mesh free formulations use a node-by-node calculation to generate, in the
domain of influence of the local node, the respective rows of the global system of equations.

5.1 Local meshfree method (LMFM)
In the absence of body forces, the kinematic formulation of the local work theorem, equation
(3.3), can be written simply as
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Z
ΓQ−ΓQt

t dΓ ¼ −

Z
ΓQt

�t dΓ (5.1)

which represents mechanical equilibrium of the boundary tractions of the local domain UQ,
associated with the field node Q ∈ UQ. Note that, although derived in an entirely different

P
q

q
Q

P

R

Note(s): ΩP, ΩQ and ΩR represent the local compact supports of the corresponding nodes
xP, xQ and xR; Ωx is the domain of definition, of the MLS approximation of the sampling
point x, which is the set of nodes, in this case xP, xQ and xR, whose compact support
contains this sampling point

Note(s): Reference nodal points P, Q and R have associated corresponding local domains ΩP, ΩQ and ΩR;
in the local domain ΩQ, with boundary ΓQ = ΓQi Qt Qu, in which ΓQi is the interior local boundary, while

Qt t and ΓQu Γ u, is defined the appropriate form of the work theorem, assigned to the node Q

Figure 3.
Schematic
representation of a
meshfree discretization
of the global domain U
and boundary Γ, with a
distribution of nodes

Figure 2.
Meshfree discretization
of the global domainU,
with boundary
Γ 5 Γu ∪ Γt
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way that does not make use of the work theorem, this equation corresponds to the model
MLPG5, presented by Atluri and Shen (2002), here referred to as MLPG.

For a meshfree discretization of the body, the local meshfree method, symbolically
referred to as LMFM, is used to compute the respective system of algebraic equations, in a
node-by-node process, throughout integration of the corresponding local form (5.1) assigned
to each node, with rectangular or circular local domains and numerical quadrature applied on
each side, or quadrant, of the local domain, as schematically represented in Figure 4.

The MLS approximation of a displacement component uh(x) is performed in terms of the
unknown nodal parameters bui, see Oliveira and Portela (2016), as

uhðxÞ ¼
Xn

i¼1

fiðxÞbui; (5.2)

in which fi(x) is the shape function corresponding to the node xi. Consequently, the
approximation of the elastic field is also performed in terms of the unknownnodal parametersbu, as

u ¼
�
uhðxÞ
vhðxÞ

�
¼

�
f1ðxÞ 0 . . .
0 f1ðxÞ . . .

fnðxÞ
0

0
fnðxÞ

�
2
666664

bu1bv1
..
.

bunbvn

3
777775 ¼ Φbu (5.3)

and

ε ¼ Lu ¼ LΦbu ¼ Bbu; (5.4)

in which geometrical linearity is assumed in the differential operator L and thus,

B ¼
2
4f1;1 0 . . .

0 f1;2 . . .
f1;2 f1;1 . . .

fn;1

0
fn;2

0
fn;2

fn;1

3
5: (5.5)

Stress and traction components are respectively approximated as

σ ¼ D ε ¼ DBbu; (5.6)

and

(a) (b)

Figure 4.
Schematic

representation of
numerical quadrature
points, on each side, or

quadrant, of local
domains, for the

computation of nodal
equilibrium equations

(5.1) in LMFM
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t ¼ nσ ¼ nDBbu; (5.7)

in which D is the matrix of the elastic constants and n is the matrix of the components of the
unit outward normal, defined as

n ¼
�
n1 0 n2
0 0 n1

�
(5.8)

Therefore, the MLS approximation of the local form (5.1) is carried out in terms of the
unknown nodal parameters bu, thus leading to the system of two linear equationsZ

ΓQ−ΓQt

n D Bbu dΓ ¼ �
Z
ΓQt

�t dΓ (5.9)

that can be written as

KQ bu ¼ FQ; (5.10)

in which KQ, denotes the stiffness matrix of the node Q, which is of the order 2 3 2n
(n represents the number of nodes of the influence domain of Q) given by

KQ ¼
Z

ΓQ−ΓQt

n D Bbu dΓ (5.11)

and FQ, denotes the force vector associated with the node Q, given by

FQ ¼ −

Z
ΓQt

�t dΓ (5.12)

For a problem with a total of N nodes, in which M is the number of interior and static-
boundary nodes, the assembly of equations (5.10) for all M nodes leads to the 2M 3 2N
system of equations

Kbu ¼ F (5.13)

Finally, the remaining equations are obtained from the N–M nodes on the kinematic
boundary. For each of these nodes, a direct interpolation method, first presented by Liu and
Yan (2000), is used to impose the boundary condition as

uhkðxjÞ ¼
Xn

i¼1

fiðxjÞbui;k ¼ �uk; (5.14)

with k 5 1,2, where �uk is the specified nodal displacement component. Equations (5.14) are
directly assembled into the global system of equations (5.13).

It is important to note that, the line integration carried out only on the boundary of the
local domain, in equation (5.1), to build the respective nodal stiffness matrix of LMFM, is
computationally much more efficient than other meshfree methods that use domain
integration, as is the case of the EFG method, presented by Belytschko et al. (1994), or the
MLPG1, MLPG3 and MLPG6 methods presented by Atluri et al. (Atluri and Shen, 2002). The
higher efficiency of LMFM is clearly evident in numerical results.
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5.2 Integrated local meshfree method (ILMFM)
In the absence of body forces, general numerical methods can be effectively formulated
through an integrated local form of the work theoremwhich, in the simplest linear case, leads
to a point–wise discrete form that improves the accuracy and the computational efficiency, as
numerical results clearly demonstrate. Hence, assuming a linear variation of tractions along
each boundary segment of the local domain, the local integral form of equilibrium can be
exactly evaluated with a single quadrature point, centered on each segment of the boundary.
In this case, equation (5.1) simply leads to.

Li

ni

Xni
j¼1

txj ¼ −
Lt

nt

Xnt
k¼1

�txk; (5.15)

in which ni and nt denote the total number of integration points, or boundary segments,
defined on, respectively the interior local boundary ΓQi5 ΓQ� ΓQt� ΓQu, with length Li, and
the local static boundary ΓQt, with length Lt. This integrated equation, which leads to the
formulation of the integrated local meshfree method, symbolically referred to as ILMFM,
represents a point–wise discrete form of mechanical equilibrium of tractions, evaluated at a
set of points on the boundary of the local domain UQ.

Consider a meshfree discretization of the body. Then, ILMFM is used to compute the
respective system of algebraic equations, in a node-by-node process, throughout traction
evaluation at each central point of the boundary segments of the corresponding integrated
local form (5.15) assigned to each node, with rectangular or circular local domains. Figure 5
schematically represents these local domains with four boundary segments and one
integration point on each segment (side, or quadrant) of the respective local domain.

Discretization of the integrated local form (5.15) is carried out with the MLS
approximation, in terms of the unknown nodal parameters bu, thus leading to the system of
two linear algebraic equations

Li

ni

Xni
j¼1

nxjD Bxj
bu ¼ −

Lt

nt

Xnt
k¼1

�txk (5.16)

that can be written as

KQbu ¼ FQ; (5.17)

Note(s): One point on each side, or quadrant, of the local domain, for the computation of the
integrated local form (5.15) of ILMFM

Figure 5.
Schematic

representation of
rectangular and

circular local domains
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in whichKQ, the nodal stiffness matrix associated with the nodeQ, is a 23 2nmatrix (n is the
number of nodes included in the domain of influence of the nodeQ that is the union of theMLS
domains of definition of all integration points in the local domain UQ) given by

KQ ¼ Li

ni

Xni
j¼1

nxjD Bxj (5.18)

and FQ is the respective force vector given by

FQ ¼ −
Lt

nt

Xnt
k¼1

�txk: (5.19)

Consider that the problem has a total ofN nodes. Assembling equation (5.17) for allM interior
and static-boundary field nodes leads to the global system of 2M 3 2N equations

Kbu ¼ F: (5.20)

Finally, the remaining equations are obtained from the N � M boundary nodes on the
kinematic boundary. For a node on the kinematic boundary, a direct interpolation method is
used to impose the boundary condition as

uk ¼ Φkbu ¼ �uk; (5.21)

with k 5 1,2, where �uk is the specified nodal displacement component. Equation (5.21) is
directly assembled into the global system of equation (5.20).

It can be easily anticipated higher computational efficiency and improved accuracy of
results of ILMFM, when compared against results of LMFM. As a matter of fact, while in
LMFM the computation of the nodal stiffnessmatrix, in equation (5.11), is carried out through
standard numerical quadrature, with several integration points on each side of the local
boundary, which is a time consuming process, in ILMFM it is effectively computed, in
equations (5.18), with only one integration point on each segment of the local boundary, which
basically implies a reduction of the processing time to run the analysis. In addition, the linear
reduced integration performed by ILMFM induces a reduction of the stiffness that is
accompanied by an improvement of the accuracy, with no instabilities. This accuracy
improvement, generated by the reduced integration, has been already used in the standard
displacement assumed FEM to prevent locking, Zienkiewicz et al. (Zienkiewicz and
Taylor, 1983).

The compact support and the local domain of each node of the meshfree discretization are
the essential features that lead to the independence of the equilibrium equations generated in
each local domain. Note that this independence is an important feature of local meshfree
formulations, which allows the use of conveniently defined local domains, simultaneously
modeled with different formulations, or the use of enrichment of a particular nodal stiffness
matrix without increasing the nodal degrees of freedom.

5.3 Parameters of the meshfree discretization
For each node of a meshfree discretization, the size rUs of the compact support Us, where
shape functions are defined, and the size rUq of the local domainUq, where the work theorem
is defined, are very important parameters that can affect the performance of the solution of a
numerical application. For a generic node i, of ameshfree discretization, these parameters can
be defined, respectively as

rΩs ¼ αsci (5.22)
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rΩq ¼ αqci; (5.23)

in which ci represents the distance of the node i, to the nearest neighboring node, while αs and
αq are constant parameters that must be defined in any application.

6. Local finite element numerical methods
Consider a finite element discretization of the body. While the standard displacement
assumed FEM can be derived from a global form of the work theorem that extends to the
whole domain of the body, local formulations are derived from a local form of the work
theorem, defined in appropriate local regions, around each node of the finite element mesh.

LetUx be the finite element, with n nodes xi∈U, i5 1,2, . . . , n, that contains the sampling
point x ∈ Ux. To approximate the displacement component u(x) in Ux, over the n element
nodes where the unknown nodal displacements bui are defined, the finite-element
approximation is given by

uhðxÞ ¼
Xn

i¼1

fiðxÞbui; (6.1)

in which fi(x) is the shape function corresponding to the node xi. The finite element shape
functions are nodal interpolants that is fi(xj)5 δij. Since fi(x) vanishes for x not in the finite
element, the local character of the approximation is preserved. Hence, the variables of the
elastic field are approximated, at a sampling point x, in terms of the nodal unknowns bu,
respectively as

u ¼
�
uhðxÞ
vhðxÞ

�
¼

�
f1ðxÞ 0 . . .
0 f1ðxÞ . . .

fnðxÞ
0

0
fnðxÞ

�
2
666664

bu1bv1
..
.

bunbvn

3
777775 ¼ Φbu (6.2)

and

ε ¼ L u ¼ LΦbu ¼ Bbu; (6.3)

in which geometrical linearity is assumed in the differential operator L and thus,

B ¼
2
4f1;1 0 . . .

0 f1;2 . . .
f1;2 f1;1 . . .

fn;1

0
fn;2

0
fn;2

fn;1

3
5: (6.4)

where (),k 5 v()/vxk. Stress and traction components are respectively approximated as

σ ¼ D ε ¼ DBbu; (6.5)

and

t ¼ nσ¼ nDBbu; (6.6)

in which D is the matrix of the elastic constants and n is the matrix of the components of the
unit outward normal, defined as
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n ¼
�
n1 0 n2
0 0 n1

�
(6.7)

In a local formulation, each node of the finite elementmesh discretization is associatedwith its
local domain, as schematically represented in Figure 6, which is a local region, defined around
the assigned node of the mesh, where the equilibrium equations are generated by the work
theorem. For each node of the mesh, its local region is simply the set of finite elements that
share this node. Consequently, overlapping of neighboring local domains, as schematically
represented in Figure 6, is a feature allowed in local formulations of FEM.

Regarding approximation, local formulations associate to each node of the finite element
mesh discretization a global basis or shape function of compact support, as schematically
represented in Figure 7, where the finite element approximation is defined with a local
character. This compact support is defined around the respective node of the finite element
mesh as the set of finite elements that share this node and, therefore, is coincident with the
local domain of the respective node, where the equilibrium equations resulting from the work
theorem are defined.

At an arbitrary sampling point, in a finite element mesh discretization of the body, the
respective domain of definition of the finite element approximation contains all the nodes
whose shape functions do not vanish at the sampling point which obviously is the finite
element that contains the sampling point, as schematically represented in Figure 8.

Note(s): Local domains ΩP ∈ ΩP and ΩR ∈ ΩR, associated with the nodes,
respectively P and R, are overlapping

(a) (b)

Node I

Node J
Node I Node J

Triangular elements Triangular elements

Basis function overlap

Figure 6.
Schematic
representation of the
local domain UQ,
associated with the
node Q ∈ UQ, of a
constant strain finite
element mesh

Figure 7.
Global basis or shape
function of compact
support, associated to
each node of the finite
element mesh
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Local formulations of the finite element method use a node-by-node calculation to generate
the rows of the global system of equations, while the global formulation uses the standard
element-by-element stiffness calculation, that is assembled into the global stiffness matrix.

6.1 Local finite element method (LFEM)
In the absence of body forces, the local form of the kinematic formulation of thework theorem,
equation (3.3), can be written simply asZ

ΓQ−ΓQt

t dΓ ¼ −

Z
ΓQt

�t dΓ (6.8)

which represents mechanical equilibrium of boundary tractions of the local domain UQ,
associated with the node Q ∈ UQ.

For a finite element mesh discretization of the body, the local finite element method,
symbolically referred to as LFEM, is used to compute the respective system of algebraic
equations, in a node-by-node process. Hence, for each node of the mesh, the corresponding
local form (6.8) is integrated along the boundary of the respective local domain. It is important
to note that LFEM is not restricted to any particular type of finite element.

Consider that ni and nt represent the total number of finite elements that span, respectively
the interior local boundary ΓQi5 ΓQ� ΓQt� ΓQu and the local static boundary ΓQt. Then the
equilibrium equation (6.8) can be written asXni

j¼1

Z
ΓQ−ΓQt

tj dΓ ¼ −

Xnt
k¼1

Z
ΓQt

�tk dΓ (6.9)

Discretization of this equation is carried out with the finite element approximation, equations
(6.2)–(6.6), in terms of the unknown nodal displacements u, thus leading to the system of two
linear equations

KQu ¼ FQ; (6.10)

in whichKQ, the nodal stiffness matrix associated with the nodeQ, is a 23 2nmatrix (n is the
number of nodes included in the compact support of the node Q) given by

Note(s): The respective domain of definition of the finite element approximation
contains the element nodes P, Q and R, whose shape functions do not vanish at the
sampling point. Note that local domains ΩP, ΩQ and ΩR, associated with
the corresponding nodes P, Q and R, simultaneously contain the sampling point,
that is

Figure 8.
Schematic

representation of a
sampling point x, in a

constant strain
triangular finite

element
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KQ ¼
Xni
j¼1

Z
ΓQ−ΓQt

njD BjdΓ (6.11)

and FQ, is the force vector associated with the node Q, given by

FQ ¼ �
Xnt
k¼1

Z
ΓQt

�tk dΓ: (6.12)

Consider that the discretization of the body has a total of N nodes. Then, assembling
equations (6.10) for all M interior and static-boundary nodes leads to the global system of
2M 3 2N equations

Ku ¼ F: (6.13)

Finally, the remaining equations are obtained from the N � M nodes on the kinematic
boundary. For a node on the kinematic boundary, the respective boundary condition can be
imposed as

ukðxjÞ ¼ �uk; (6.14)

with k 5 1,2, where �uk is the specified nodal displacement component. Equation (6.14) is
directly assembled into the global system of equation (6.13).

It is important to note the higher computational efficiency of the local formulation LFEM,
over the standard FEM, whenever the discretization is carried out with higher-order finite
elements. This is a consequence of the simple line integration of LFEM, carried out only on the
boundary of the local domain, as represented in equation (6.9), against the two-dimensional
integration of the finite element stiffness of the standard FEM.

6.2 Integrated local finite element method (ILFEM)
In the absence of body forces, general numerical methods can be effectively formulated
through an integrated local form of the work theorem with rigid-body displacements which,
in the simplest linear case, leads to a point–wise discrete form that improves the higher
computational efficiency of LFEM.

When a linear variation of tractions is assumed, along each boundary segment of the local
domain, the local form of the work theorem can be exactly integrated with one quadrature
point, centered on each segment of the boundary. Thus, when this linear integration process
is considered, equation (6.8) can be written simply as

Li

ni

Xni
j¼1

txj þ
Lt

nt

Xnt
k¼1

�txk ¼ 0; (6.15)

in which ni and nt represent the total number of integration points, or segments, defined on,
respectively the interior local boundary ΓQi 5 ΓQ �ΓQt �ΓQu, with length Li, and the local
static boundaryΓQt, with length Lt. This integrated equation represents a point–wise discrete
form of boundary tractions at a set of ni þ nt integration points of the local domain UQ,
assigned to the node Q ∈ UQ.

For a finite element discretization, the integrated local finite-element method, symbolically
referred to as ILFEM, is used to compute the respective system of algebraic equations, in a
node-by-node process. For each node of the finite element mesh, the corresponding integrated
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local form (6.15) is evaluated at the integration points of the respective local domain, which
are defined at the center of the boundary side of each finite element of the local domain. It is
important to note that ILFEM is not restricted to any sort of finite element type.

Discretization of the equilibrium equations (6.15) is carried out with the finite element
approximation, equations (6.2)–(6.6), defined in terms of the unknown nodal displacements u,
thus leading to a system of two linear equations that can be written as

KQu ¼ FQ; (6.16)

in which KQ, the nodal stiffness matrix associated with the field node Q, is a 2 3 2n matrix
(n is the number of nodes included in the compact support of the node Q) given by

KQ ¼ Li

ni

Xni
j¼1

nxjD Bxj (6.17)

and FQ, is the load vector associated with the node Q, given by

FQ ¼ −
Lt

nt

Xnt
k¼1

Z
ΓQt

�txk: (6.18)

Consider that the discretization of the body has a total ofN nodes. Then, assembling equation
(6.16) for all M interior and static-boundary nodes leads to the global system of 2M 3 2N
equations

Ku ¼ F: (6.19)

Finally, the remaining equations are obtained from the N � M nodes on the kinematic
boundary. For a node on the kinematic boundary, the respective boundary condition can be
imposed as

ukðxjÞ ¼ �uk; (6.20)

with k 5 1, 2, where �uk is the specified nodal displacement component. Equation (6.20) is
directly assembled into the global system of equation (6.19).

It is quite important to note the higher computational efficiency of the integrated local
formulation of ILFEM, when compared against the local formulation of LFEM, whenever
the discretization is carried out with higher-order finite elements. In effect, while in ILFEM
the computation of the nodal stiffness matrix, through equation (6.17), is performed with
one integration point on each element, in LFEM it is carried out, through equation (6.11),
with standard numerical quadrature with several integration points, which is a time-
consuming process. Furthermore, the reduced integration performed by ILFEM decreases
the stiffness of the local node, which leads to an increase in the solution accuracy.
This behavior, also present in the integrated local meshfree method, is obviously an
advantage of the local formulation of ILFEM over the global standard formulation
of FEM.

6.3 Constant strain triangular mesh
Consider now the discretization of the body with a mesh of constant strain triangular finite
elements. In this case, local formulations may become not as advantageous as in the case of a
mesh with higher-order finite elements, since the constant strain triangular finite element
already leads to a constant stiffness matrix, therefore free of integration, in the
standard FEM.
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The first consequence of adopting such simple kind of discretization, with a mesh of
constant strain triangular finite elements, is that both local formulations of LFEMand ILFEM
generate exactly the same system of algebraic equations, provided the same finite element
mesh is used. In effect, for the node Q, the respective nodal stiffness matrix generated by
LFEM, equation (6.11), can be written as

KQ ¼
Xni
j¼1

Z
ΓQ−ΓQt

nj D BjdΓ ¼
Xni
j¼1

Lj nj D Bj; (6.21)

in which ni is the total number of finite elements of the compact support that span the interior
local boundary ΓQi 5 ΓQ � ΓQt � ΓQu, with linear segments of length Lj and unit outward
normal nj.

On the other hand, for the same nodeQ, the respective nodal stiffness matrix generated by
ILFEM, equations (6.17), with one integration point on each linear segment of length Lj, such
that Li ¼

Pni
j¼1Lj; of the interior local boundary defined by the finite elements of the compact

support, can be written as

KQ ¼ Li

ni

Xni
j¼1

nxj D Bxj ¼
Xni
j¼1

Lj nj D Bj (6.22)

which is absolutely identical to equation (6.21), and therefore proves that the same system of
algebraic equation is generated by LFEM and ILFEM.

The second consequence, of adopting a finite element mesh discretization of constant
strain triangles, is that the system of algebraic equations generated by the local formulations
of LFEM and ILFEM is absolutely identical to the one generated by the standard FEM,
provided the same linear triangular finite element mesh is used. This can be easily shown, for
instance, with the case of LFEM, in two steps, as follows.

In the first step, consider that the equilibrium of boundary tractions, of the local domain
UQ, in equation (6.8), can be computed either in a segment by-segment resultant process, as
represented in equation (6.9), or throughout the resultant of the equivalent nodal forces. These
two processes of equilibrium enforcement, in the reference local domain, are absolutely
equivalent, as schematically represented in Figure 9.

Hence, in the second step, consider the equivalent nodal forces of the boundary tractions,
of the local domain UQ. In the absence of body forces, the local virtual displacement

(a) (b)
Note(s): (a) computed in a segment-by-segment resultant process; (b) computed throughout
the equivalent nodal forces

Figure 9.
Schematic
representation of the
equilibrium of
boundary tractions of
the local domain UQ,
associated with the
field node Q ∈ UQ, in a
constant strain finite
element mesh
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formulation of the work theorem, equations (3.6), can be used to compute these equivalent
nodal forces as

Z
ΓQ

tTδu dΓ ¼
Z
ΩQ

σTδε dΩ: (6.23)

For the finite element approximation, equations (6.2)–(6.6), the arbitrary virtual variations,
defined in terms of the element nodal displacements bu, respectively as

δu ¼ Φδbu (6.24)

and

δε ¼ L δbu ¼ LΦδbu ¼ B δbu; (6.25)

eventually lead to the final equationZ
ΓQ

ΦTt dΓ ¼
Z
ΩQ

BTD Bu dΩ: (6.26)

For each finite element of the local domainUQ, the left-hand side of equation (6.26) represents
the equivalent nodal forces of the boundary tractions, obviously with null components for the
node Q.

Therefore, since the equilibrium of boundary tractions of the local domainUQ, represented
by equation (6.8), computed in a segment-by-segment resultant process, as represented in
equation (6.9), is identical to the resultant of the equivalent nodal-forces, represented by the
left-hand side of equation (6.26), that isZ

ΓQ

t dΓ ¼
Xni
j¼1

Z
ΓQ

tj dΓ≡
Xni
j¼1

Z
ΓQ

ΦTtj dΓ; (6.27)

it can be concluded that the local stiffness matrix of equation (6.8) that is equation (6.11), is
equivalent to the right-hand side of equation (6.26) that is

KQ ¼
Xni
j¼1

Z
ΓQ

njD BjdΓ≡

Xni
j¼1

Z
ΩQ

BT
j D BjdΩ; (6.28)

which represents the stiffness matrix of the standard FEM. This proves that local
formulations LFEM and ILFEM generate a system of algebraic equations that is equivalent
to the one generated by the global formulation of the standard FEM, provided the same linear
triangular finite element mesh is used. Therefore, both global and local formulations of the
finite element method lead to the same solution, for the same triangular finite element mesh
discretization. This means that whenever these formulations of the finite element method
consider the same triangular finite element approximation, they lead to the same solution
accuracy which only depends on the discretization used.

An important remark, regarding the computational efficiency of the local formulations
LFEM and ILFEM, whenever a constant strain triangular finite element mesh discretization
is considered, must be emphasized. Local formulations generate the global stiffness matrix of
the body, in a node-by-node calculation, as presented in equations (6.21) and (6.22), for the
node Q. Consequently, for each finite element of the triangular mesh, the constant strain of
the element is evaluated three times, in order to compute the element contribution for the
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corresponding nodal stiffness, as schematically represented in Figure 8, for the element nodes
P,Q and R. This makes local formulations LFEM and ILFEM, possibly less efficient than the
standard FEM, where the stiffness of each finite element is computed only once, although it
must be assembled in the global stiffness matrix of the body, row by row.

The compact support and the local domain, of each node of the finite elementmesh, are the
key properties that lead to the independence of the equilibrium equations generated in each
local domain. This independence is a feature of extremely importance of local finite element
formulations that allows the use of local domains, simultaneously modeled with different
formulations, or the use of enrichment of a particular nodal stiffness matrix, without
increasing the nodal degrees of freedom, in conveniently defined local domains.

7. Numerical results
This section presents some numerical results to illustrate the accuracy and efficiency of the
new formulations, both the local and the integrated local, meshfree and finite element
numerical methods.

The norms can be used for error estimation in displacement and energy. These error
norms can be defined, respectively as

kuk ¼
2
4Z

Ω

ðu� uexactÞTðu� uexactÞdΩ
3
5

1 =

2

(7.1)

And

kεk ¼
2
4Z

Ω

ðε� εexactÞTDðε� εexactÞdΩ
3
5

1 =

2

; (7.2)

in which u and ε represent, respectively the numerical results of displacement and strain,
whereas uexact and εexact represent the corresponding values of the exact solution.

7.1 Benchmark 1 – patch test
As a first benchmark problem, consider the standard patch test, an analysis of a rectangular
plate loaded by a uniform normal traction applied on the top edge, with proper displacement
constraints on the bottom edge, as represented in Figure 10. The plate is assumed in a plane
stress condition and the material parameters are Young’s modulus E5 1.0 and the Poisson’s

(a) (b)

Figure 10.
The patch test,
analysis of a
rectangular plate under
a uniform normal
traction discretized
with two nodal
distributions
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ratio ν5 0.25. The plate is discretized with nine nodes, arranged in two nodal configurations
in which one is regular and the other is irregular, as shown in Figure 10. Rectangular local
integration domains Uq were considered. On each side of the local domain, LMFM was
applied with eight Gauss-quadrature points, while ILMFM was applied with one integration
point at the center of the segment.

The results obtained, represented in Figure 11, are a linear displacement on lateral edges
and a constant displacement on the top edge; the normal stress in the loading direction is
constant and there is no shear stress in the plate, as expected.

7.2 Benchmark 2 – cantilever-beam
As a second benchmark problem, consider a cantilever beam with dimensions L 3 D and
with unit depth, subjected to a parabolic traction at the free end, as shown in Figure 12. The
beam is assumed in a plane stress state and the parabolic traction is defined as

�t2ðx2Þ ¼ −
P

2I

�
D2

4
� x22

�
; (7.3)

Figure 12.
Timoshenko’s

cantilever beam

Figure 11.
Results of the patch

test are a linear
displacement on lateral

edges, a constant
displacement on the
top edge, a constant
normal stress in the

loading direction and
no shear stress
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where I5D3/12 is the moment of inertia. Material properties of the cantilever beam are taken
as Young’s modulus E5 3.03 107 and the Poisson’s ratio ν5 0.3 and the beam dimensions
are D 5 12 and L 5 48. The shear force is P 5 1,000.

7.3 Meshfree discretization
In order to improve the accuracy of a meshfree numerical model, the discretization requires a
proper refinement of rUs and rUq, through the specification of parameters αs and αq defined in
equations, respectively, (5.22) and (5.23). In general, the discretization parameters are
considered, respectively as αs > 1.0 and αq < 1.0. As a matter of fact, for a small size rUs, the
algorithm of the MLS approximation may be singular and the shape function cannot be
constructed, because there are not enough nodes in Us for interpolating. On the other hand,
local domains Uq can be overlapping; however, the size rUq should ensure that the local
domain, of internal nodes, is entirely within the solution domain, without intersecting the
boundary of the body.

To obtain the appropriate values of the discretization parameters, for the benchmark
problem, a parametric analysis was carried out with four regular discretizations of the
cantilever beam, with 33 3 5 5 165, 65 3 9 5 585, 97 3 13 5 1,261 and 129 3 17 5 2,193
nodes, from which, the one with 165 nodes is represented in Figure 13. The results obtained
for this parametric analysis, represented in Figure 14, clearly show that the optimum values
of the discretization parameters are αs 5 4.5 and αq 5 0.5 which, therefore, are the values
considered for the applications presented in this paper.

Note(s): αs and αq are defined in equations, respectively (5.22) and (5.23), carried out with four
regular discretizations of the cantilever beam, with 33 × 5 = 165, 65 × 9 = 585, 97 × 13 = 1,261
and 129 × 17 = 2,193 nodes  

Figure 13.
Regular nodal
distribution of the
cantilever-beam
discretization with
33 3 5 5 165 nodes

Figure 14.
Analysis of the
meshfree discretization
parameters αs and αq
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Rectangular local domainsUqwere considered to compute the equilibrium equations. While in
the case of ILMFM, integration was performed with 1 point, centered on each side ofUq, in the
case of LMFM, integration was carried out with 10 points of Gauss quadrature, placed along
eachboundary ofUq, as schematically represented, respectively inFigures 5 and 4.A first-order
polynomial basis was used in the MLS approximation of both meshfree methods.

To solve the benchmark problem, a regular nodal distribution, represented in Figure 13,
was considered with a discretization of 33 3 5 5 165 nodes.

7.4 Meshfree displacement and stress
Displacements obtained with LMFM and ILMFM, presented in Figure 15, show very good
agreement with corresponding results of the exact solution. Error norms in displacement
u5 6.693 10–5 and in energy ε5 1.583 10–3 were obtained with ILMFM for this relatively
coarse nodal configuration. As shown in Figure 16, stresses, computed at the center of the
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beam that is x1 5 L/2 and x2 ∈ [�D/2, D/2], also present very good agreement with
corresponding results of the exact solution.

7.5 Performance of ILMFM
The highly relevant performance of ILMFM is a key feature of this new numerical method.
Linear integration is considered with one central point on any segment of the local boundary.
Additional points can be considered by subdividing the boundary segment. This paper
considers identical segments, on each side of the local domain, which leads to equally spaced
integration points.

Therefore, it is important to assess the performance of the method, as a function of the
number of integration points, or segments, defined on each side of the local domain. Figure 17
shows the behavior of the error norm in energy ε of ILMFM, in terms of the number of
integration points, for the discretization of 33 3 5 5 165 nodes; for comparison, the error
norm of LMFM, computed with 10 Gauss integration points on each side of the local domain,
is also plotted. It can be seen that the lower value of the error norm of ILMFMmonotonically
converges to the higher value of the error norm of LMFM, as a function of the number of
integration points. The minimum value of the error is always obtained for only one
integration point on each side of the local domain. This is a very important result that
evidences that the ILMFM always leads to much better results than those obtained with
the LMFM.

The discussion of this behavior takes into account a physical interpretation of results, as
follows. The theorem of the total potential energy leads to an upper bound of the strain
energy, which corresponds to a lower bound of the stiffness of the exact solution that actually
settles in the body. Thus, the formulation of local numerical methods represents a lower
bound of the strain energy which results in overestimating the stiffness of the system.
Therefore, as Figure 17 shows, the solution of LMFM is always stiffer than the solution of
ILMFM, obtained with one integration point, which is always very close to the exact solution
of the problem. When additional segments, with one integration point, are considered in
ILMFM, its solution monotonically converges to the solution of LMFM and hence, it can be
concluded that the additional integration points monotonically increase the stiffness of
ILMFM, obtained with only one integration point. The best solution is always obtained from
the lower stiffness of ILMFM, obtained with only one integration point on each side of the
local domain. This behavior is a common pattern of all numerical results of this paper. Note
that the improvement of the solution accuracy, generated by the reduced integration, has
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Note(s): LMFM, computed with 10 Gauss points on each side of the local domain,
is also plotted for comparison. ILMFM monotonically converges to LMFM, as a
function of the number of integration points, with the best result of ILMFM obtained
for one integration point on each side of the local domain

Figure 17.
Error norm in energy ε
of ILMFM, as a
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been already used in the standard displacement assumed FEM, as a measure to prevent
locking problems of fully integrated elements. As a final conclusion of this discussion, it is
important to mention that the reduced integration, carried out by the linearly integrated local
numerical methods presented in this paper, does not lead to any sort of spurious instability.
This behavior is a direct consequence of having a total of four integration points, in the case of
ILMFM, to compute the stiffness associated to each local node which, therefore, prevents the
generation of spurious zero-energy modes, unlike nodal integration methods without
stabilization. As a matter of fact, nodal integration in meshfree methods leads to instabilities
due to the fact that each node is associated with a support domain, where shape function
derivatives are integrated, to compute the nodal stiffness. This implies that each integration
domain is associated with only one integration point, that is the node. Hence when only one
integration point is considered for higher order functions, other than constant strain, the
nodal integration causes instabilities.

7.6 Accuracy and convergence of ILMFM
Another test was performed to assess the solution accuracy and convergence of ILMFM.
Three regular discretizations of the cantilever beam, with 653 95 585, 973 135 1,261 and
1293 175 2,193 nodes were considered. ILMFM was applied with one integration point, on
each side of the local domain, while LMFMwas applied with 10 Gauss integration points, for
comparison. Figure 18 presents the results for the solution accuracy and convergence rates
obtained. As it can be clearly seen ILMFM, with one integration point on each side of the local
domain, is always much more accurate than LMFM, with a stable convergence rate higher
than the one of LMFM.

7.7 Condition number of ILMFM
When new numerical methods are developed, it is quite important to compute the condition
number of the respective global stiffnessmatrix, an upper bound to the amplification of errors
in structural properties and loads, to ensure the stiffness matrix is well conditioned. The

L
og

 ��
ε �

� 

L
og

 ��
ε �

� 

10-3

10-4

10-2

10-3

10-4

10-2

LMFM LMFM

ILMFM
ILMFM

Log n�
20 30 40 50400 800 1,200

Number of nodes
Accuracy

(a) (b)
Convergence rates

1,600 2,000 2,400

Note(s): On each side of the local domain, ILMFM was applied with 1 integration point, on each
side of the local domain, while LMFM used 10 Gauss integration points. ILMFM presents an
excellent performance

Figure 18.
Accuracy and

convergence rates,
measured from the

error norm in energy ε,
for the cantilever-beam

discretization with
65 3 9 5 585,

97 3 13 5 1,261 and
129 3 17 5 2,193

nodes n

Formulation of
local numerical

methods



analysis was carried out for both LMFM and ILMFM, as well as for the standard FEM, in
order to compare the corresponding condition numbers. This comparison was performed
using regular discretizations of the cantilever beam, with 33 3 5 5 1,65, 65 3 9 5 585 and
1293 175 2,193 nodes, and a FEMmesh defined from the same nodal distribution by using
bilinear quadrilateral finite elements, resulting in meshes with a total of 32 3 4 5 128,
643 85 512, 973 135 1,261 and 1283 165 2,048 finite elements. Table 1 and Figure 19
present the results obtained in this analysis, where it can be seen that ILMFM always
performs better than the other methods, with smaller values of the condition number, even
outperforming the values of FEM for all nodal distributions. This is a clear evidence of the
high level of numerical efficiency of ILMFM.

Another test was performed to analyze the influence of the number of integration points of
ILMFM in the condition number of the global stiffness matrix. The analysis was carried out
for ILMFM and LMFM for comparison, with the same nodal distribution of 1293 175 2,193
nodes, used in the previous test. The results obtained, presented in Figure 19, show that the
condition number of ILMFM is always lower than the corresponding number of LMFM; as the
number of integration points increases, the condition number of ILMFM increases
monotonically, from a minimum value that corresponds to a single integration point on
each side of the local domain, until it eventually converges to an upper limit that corresponds
to the value of the condition number of LMFM. This behavior, a natural consequence of the
reduced integration performed by ILMFM, eventually ensures that the stiffness matrix of
ILMFM, with 1 point on each side of the local domain, is always well conditioned.

7.8 Computational efficiency of ILMFM
The performance of ILMFM exhibits a clear reduction of the computational effort, when
compared to other numerical methods, which is obviously a consequence of the formulation
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Condition number
Nodes LMFM FEM ILMFM

165 1.05Eþ10 9.93Eþ09 8.09Eþ09
585 2.02Eþ10 1.58Eþ10 1.49Eþ10
2,193 2.83Eþ10 2.33Eþ10 2.01Eþ10

Figure 19.
Results of the condition
number of the global
stiffness matrix

Table 1.
Condition number of
the global stiffness
matrix in local
meshfree methods
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differences and implementation procedures. Hence, this section presents some evidence of
this striking feature of ILMFM, through an assessment of the respective CPU time
consumption. Following this objective, four regular discretizations of the cantilever-beam, with
333 5 5 165, 653 9 5 585, 973 135 1,261 and 1293 175 2,193 nodes were considered.
Only the major computational cost that is the cost of generating the global stiffness matrix
and solving the system of algebraic equations was measured in this test. All the routines
were compared when using MATLAB 2015a on an Intel Core I7-4700MQ computer with
CPU of 2.4GHz and 16 GB of RAM. The test was carried out for ILMFM, LMFM, as well as
for the EFG method, presented by Belytschko et al. (1994), the Meshless Local Petrov–
Galerkin Finite Volume Method (MLPG-FVM), presented by Atluri et al. (2004) and the
standard FEM, implemented through the routines presented byKwon andBang (2000). The
FEM mesh was defined from the same nodal distributions by using bilinear quadrilateral
finite elements, resulting in meshes with a total of 32 3 4 5 128, 64 3 8 5 512,
97 3 13 5 1,261 and 128 3 16 5 2,048 finite elements. To carry out the test, without
compromising the accuracy, 10 Gauss integration points were used in LMFM, EFG and
MLPG-FVM, four Gauss quadrature points were used in FEM, while one integration point,
on each side of the local domain, was used in ILMFM. The results obtained, presented in
Table 2 and Figure 20, show that the CPU time of ILMFM is always very much lower than
the CPU time of LMFM, EFG and MLPG-FVM; the CPU time of ILMFM corresponds at the
most, only to a small percentage of about 28% of the CPU time ofMLPG-FVM, which can be
computationally more efficient than FEM, as already reported by Moosavi and Khelil
(2008); these very important results are also evident in Table 2 which shows that, for the
discretization with 2,193 nodes, the CPU time of MLPG-FVM is about 55% of the CPU time

CPU time (seconds)
Nodes EFG LMFM ILMFM

165 9.0220 6.07957 0.87022
585 60.7681 36.65571 4.47215
1,261 194.5159 97.67776 11.94385
2,193 338.2817 169.87100 20.77149
Nodes MLPG-FVM ILMFM FEM
165 4.19016 0.87022 0.20228
585 16.06457 4.47215 3.15939
1,261 43.21458 11.94385 24.26805
2,193 75.15430 20.77149 134.88930

Figure 20.
Results of the CPU time
(s) obtained by ILMFM,
LMFM, EFG, MLPG-
FVM and FEM, with

regular nodal
distributions of the

cantilever-beam
discretization

Table 2.
CPU time measured in
local meshfreemethods
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of FEM, while ILMFM performs even better with CPU time of about only 15% of the
respective value of FEM. Therefore, the conclusion that can be clearly drawn out of these
tests is that the CPU time of ILMFM is verymuch lower than the CPU time of FEM. This is a
remarkable result that undoubtedly evidences the very high level of the computational
efficiency of ILMFM.

This assessment of the computational efficiency of ILMFM cannot be completed without
showing that the low values of the CPU time, reported in Table 2, do not compromise the high
level of accuracy of the method. This can be done through a comparison of ILMFM and
MLPG-FVM results, against the exact solution. The MLPG-FVM was chosen due to its fast
computing and excellent rate of convergence that even outperforms the FEM for some
problems, see Atluri et al. (2004). Results were obtained for the same parameters and the same
nodal distribution of 33 3 5 5 165 nodes of the cantilever-beam discretization.

As Figure 21 shows both methods present a high level of accuracy and a good agreement
with the analytical solution, although ILMFM is definitively more accurate, under the same
conditions. Therefore, the high level of the computational efficiency of ILMFM, associated
with a remarkable accuracy, makes this a very reliable and robust meshfree numerical
method.

7.9 Finite element discretization
To solve the benchmark problem, three regular discretizations of the cantilever beam, with
103 43 25 80, 103 63 25 120 and 103 103 25 200 constant-strain triangular finite
elements with corresponding 55, 77 and 121 nodes, were considered. Figure 22 represents an
exploded view of the mesh with 10 3 4 3 2 5 80 finite elements and 55 nodes.

The first test was carried out with the finite element mesh of 55 nodes, in order to make
evident that both local finite element formulations, ILFEM and LFEM, generate identical
global stiffness matrices which in turn are identical to the stiffness matrix generated by the
standard FEM. Figure 23 shows images of these global stiffness matrices, where it can be
easily seen that the matrices are effectively identical.

Figure 21.
Results of normalized
vertical displacements
for x1 5 L/2, obtained
by ILMFM and MLPG-
FVM, with a regular
33 3 5 5 165 nodal
distribution of the
cantilever-beam
discretization

Figure 22.
An exploded view of
the constant-strain
finite-element mesh
with 10 3 4 3 2 5 80
elements and 55 nodes
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Generating identical global stiffness matrices, for the same triangular finite element mesh
discretization, implies that both the global and local formulations of the finite elementmethod
lead to the same solution accuracy which only depends on the discretization used. This
statement becomes evident in Figure 24, which displays the displacement and energy error
norms for ILFEM, LFEM and standard FEM, computed from the three meshes with
corresponding 55, 77 and 121 nodes.

A final test aims assessing the computational efficiency of local formulations ILFEM and
LFEM, against the standard FEM. The three finite element meshes with corresponding 55, 77
and 121 nodes were considered to perform this test. Only the cost of generating the global
stiffness matrix and solving the system of algebraic equations was measured in this test. All

(a) (b)
ILFEM and LFEM Standard FEM

Note(s): It can be seen that ILFEM and LFEM generate a global stiffness matrix that is
identical to the stiffness matrix generated by the standard FEM
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the routines were compared when using the CAS software Maple 2017, on a MacBook Pro
computer, with processor 3,3 GHz Intel Core i7 and memory 16 GB 2133 MHz LPDDR3. The
results obtained, presented in Table 3, show that the CPU time of the standard FEM is always
lower than the CPU time of the local formulations ILFEM and LFEM, which is about three
times the CPU time of the standard FEM. This is a consequence of the fact that local
formulations generate the global stiffness matrix in a node-by-node stiffness calculation and,
therefore, for each finite element of the mesh, the constant strain of the element is evaluated
three times, in order to compute the element contribution for the corresponding nodal
stiffness. This makes local formulations LFEM and ILFEM, less efficient than the standard
FEM, where the stiffness of each finite element is computed only once, to be assembled in the
global stiffness matrix of the body. This behavior, however, should be entirely different in a
parallel processing environment, where local formulations are more appropriate, since they
implement the node-by-node generation of the final system of equations.

8. Conclusions
New local formulations of meshfree and finite element numerical methods, in two-
dimensional linear elastostatics, are presented in this paper.

The main feature of local numerical methods is the enforcement of a solution paradigm
defined by a node-by-node calculation, to generate the rows of the global system of equations
of a discretization of the body.

Kinematic formulations of the work theorem consider a particular convenient
specification of the kinematically admissible strain field, leading thus to an equation of
mechanical equilibrium, in the local domain, used to generate the respective stiffness matrix
of the numerical method. A simple case of local equilibrium equations, based on a
kinematically admissible strain field generated by a rigid-body displacement, is presented.

Two new meshfree numerical methods, LMFM and ILMFM, are presented in this paper.
MLS approximation of the elastic field is used to implement both formulations, with
rectangular local domains and quartic-spline MLS weight functions.

In LMFM, the local form of the equilibrium equation is a boundary integral, in the absence
of body forces. Therefore, since the integration is carried out only on the boundary of the local
domain, LMFM is computationallymuchmore efficient than othermeshfreemethods that use
domain integration with background cells.

On the other hand, in ILMFM, a linearly integrated local form of the equilibrium equation
is discretely defined at the center point of each segment of the local domain. Consequently,
ILMFM is computationally much more efficient than LMFM and other numerical methods
that use standard numerical quadrature. In addition, the reduced integration of ILMFM, with
only one point on each segment of the local domain, induces a reduction of the stiffness of the
local node which consequently leads to an increase of the solution accuracy with no
instabilities.

Three test problems were analyzed with ILMFM and LMFM, in order to assess the
accuracy and efficiency of these formulations. The results obtained show that the use of the
first-order monomial basis in MLS approximation is adequate; when the support size is kept

CPU time (seconds)
Elements ILFEM LFEM FEM

80 0.663 0.665 0.284
120 0.956 0.959 0.369
200 1.605 1.609 0.551

Table 3.
CPU time measured in
local finite-element
methods
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small, more accurate and less-sensitive results are obtained. Effectively, a combination of
first-order MLS, and a small support size, requires only a few neighboring nodes that lead to
very fast computations.

All the numerical results obtained clearly demonstrate that ILMFM is an absolutely
reliable and robust formulation. ILMFMand LMFMare locking-freemethods, since they keep
the respective typical convergence rate, when Poisson’s ratio approaches the incompressible
limit of ν 5 0.5; this is an evidence that there is no spurious stiffening in computations.

The linear integration of ILMFM, implemented with a single integration point on each
segment of the local domain, led to remarkably accurate results with extremely fast
computations. Numerical results obtained undoubtedly show that this method substantially
reduces the computational effort necessary to build the stiffness matrix and therefore is
computationally very efficient, when compared to other meshfree methods. Furthermore,
since all the results obtained in the analysis are in perfect agreementwith analytical solutions,
the high level of accuracy and stability of the ILMFM implementation described herein make
this a quite reliable and robust formulation of local kinematic meshfree methods.

Meshfree methods have been applied in almost all areas of structural and fracture
mechanics; still, it is known that there are challenges in developing computationally efficient
algorithms, with accurate integration techniques that can overcome the issue of the
computational cost. The remarkable accuracy of the results with extremely fast
computations makes it possible to apply ILMFM in the case of modeling nonlinear
problems, where grid-based methods in general are not well suited. ILMFM can become an
important tool in computational nonlinear solid mechanics, especially for solving problems
with severe distortion, discontinuities and moving boundaries.

Two new local finite elementmethods, LFEM and ILFEM, are also presented in this paper.
Local formulations of the finite element method use a new solution paradigm based in the
node-by-node calculation to generate the rows of the global system of equations, while the
global formulation uses the standard element-by-element stiffness calculation, that is
assembled into the global stiffness matrix.

Local formulations associate to each node of the finite element mesh a global basis or
shape function of compact support that gives a local character to the finite element
approximation. Specifically, for each node of the finite element mesh, the compact support is
defined around the respective node by the set of finite elements that share this node and,
therefore, is coincident with the local domain of the respective node, where the equilibrium
conditions resulting from the work theorem are defined.

The standard FEM has been commonly applied as a computer simulation method to solve
a wide range of problems in a variety of practical fields, such as mechanical, aerospace,
nuclear, chemical and civil engineering. Implementation of the finite element method in CAD
systems on the basis of modern computers allows the solution of large-scale problems.
Therefore, the introduction of parallel processing, a fast growing direction of research, is able
to give the most significant result in terms of saving time designing and modeling. The finite
element is the building block of the formulation procedure of the standard global formulation.
On the other hand, local formulations of the finite element method, respectively LFEM and
ILFEM, represent an efficient node based finite element method, especially on parallel
processing, since they use a node-by-node algorithm for the finite element calculations.
The final system of equations obtained through the node-by-node procedure, of the present
local formulations, is equivalent to the one obtained through the element-by-element
procedure of the standard FEM. However, in local formulations LFEM and ILFEM, the
analysis processing can easily be parallelized, in terms of nodes, to set up and solve the global
system of equations. Effectively, LFEM and ILFEM are quite suitable for parallel
environments, because the respective algorithms based in a local domain coincident with
the compact support, associated to each node, are spatially highly localized.
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