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a b s t r a c t

A unified method based on the three-dimensional theory of elasticity is developed for the free vibration
analysis of thick cylindrical shells with general end conditions and resting on elastic foundations. Each
shell displacements, regardless of boundary conditions, is expanded as a standard Fourier cosine series
supplemented with four auxiliary functions introduced to eliminate any possible discontinuities of the
original displacement and its derivatives throughout the entire shell space including the boundaries and
then to effectively enhance the convergence of the results. Mathematically, such series expansions are
capable of representing any functions (including the exact displacement solutions). Since the displace-
ment field is constructed adequately smooth throughout the whole solution domain, an accurate
solution can obtained by using Rayleigh–Ritz procedure based on the energy functions of the shell. The
current method can be universally apply to a variety of end conditions including all the classical cases
and their combinations and arbitrary elastic foundations. The excellent accuracy and reliability of current
solutions are demonstrated by numerical examples and comparisons with the results available in the
literature. Effects of the boundary restraining parameters and foundation coefficients on frequency
parameters are investigated as well. New results for thick cylindrical shells with various end conditions
and resting on elastic foundations are presented, which may serve as benchmark solutions for validating
new computational techniques in future.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Circular cylindrical shells are one of the most important and
commonly used structural elements in various kinds of military
and civil applications, such as submarines, aircrafts, rockets,
storage tanks and pipes. The cylindrical shells in these applications
may be of recognizable thickness–length/thickness–radius ratios,
subjected to general end conditions and resting on elastic founda-
tions. They often work in complex environments which may result
in violent vibration and structural collapse. Therefore, a thorough
understanding of the vibration characteristics of these shells with
general end conditions and resting on elastic foundations is of
particular importance. Despite the many contributions to the
analysis of cylindrical shells, the establishment of a unified,
reliable and efficient mathematical model and approach for pre-
dicting the vibration behaviors of thick cylindrical shells with such
boundary conditions remains a challenging task and is the focus of
the present study.

Cylindrical shells are three-dimensional structures bounded by
two, relatively close, cylindrical surfaces. The exact 3D equations of

elasticity of cylindrical shells are complicated when written in
curvilinear coordinates. Typically, most researchers tried to simplify
such shell equations by making suitable assumptions concerning the
kinematics of deformation or the state of stress through the thickness
of the shells, and reduce the 3D shell problems to a variety of 2D
representations with reasonable accuracy. As a result, based on
different assumptions, various shell theories had been developed
by pioneers. Among them, there are mainly three major theories
which are usually known as: the Classical Shell Theories (CSTs), the
First-order Shear Deformation Theories (FSDTs) and the Higher-order
Shear Deformation Theories (HSDTs). The CSTs are based on the four
simplifying assumptions of Kirchhoff–Love's hypothesis, in which
transverse normal and shear deformations are neglected. Many of
the previous studies regarding cylindrical shells are based on the
CSTs [1–11]. However, the CSTs are limited to thin shells, for which
the thickness–radius and thickness–length ratios are small. For
slightly thick shells, the CSTs underestimate deflection and over-
estimates natural frequency due to ignoring the transverse shear
deformation effect. To overcome this drawback, two-dimensional
classical shell theories have been developed to take into account the
effects of transverse shear deformations, which resulted in various
types of FSDTs [12–15]. However, the transverse shear strains in the
FSDTs are assumed to be constant through the thickness, shear
correction factors have to be incorporated to adjust the transverse
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shear stiffness. To overcome the deficiency of the FSDTs and further
improve the dynamic analysis of shell structures, a number of HSDTs
with varying degree of refinements of the kinematics of deformation
were developed [16,17]. Such modified theories are better than FSDTs
for the analysis of moderately thick shells but are still inadequate for
the analysis of thick shells since the transverse normal stress and
strain components are ignored in the HSDTs [18]. To analyze thick
shells, the three-dimensional theory of elasticity which accounts for
all the transverse stress and strain components may be the best
choice.

Therefore, in last decades, the three-dimensional elasticity
analysis of shells has attracted the attention of several investiga-
tors. Such an analysis not only provides realistic results but also
allows further insights, which cannot otherwise be predicted by
CSTs, FSDTs and HSDTs analysis. Some research papers and articles
oriented to such contributions may be found in following enu-
meration. The vibration of thick circular cylindrical shells with
simply supported–simply supported (S–S) and clamped–clamped
(C–C) boundary conditions on the basis of three-dimensional
theory of elasticity is studied by Loy and Lam [18] using a layer
wise approach. Zhou et al. [19] presented a Chebyshev–Ritz
method for solving the free vibration of solid and hollow circular
cylinders. A semi-analytical method was developed by Mofakhami
et al. [20] to calculate the natural frequencies of finite hollow
cylinders with free ends and fixed ends. A series solution of the
general three-dimensional equations of linear elasticity was pro-
posed by Hutchinson [21] to find accurate natural frequencies for
the vibrations of solid elastic cylinders. Leissa and Kang [22]
presented a 3D method for determining the free vibration fre-
quencies and mode shapes of hollow bodies of revolution. A new
three-dimensional refined high-order theory was presented by
Khalili et al. [23] for the free vibration analysis of simply
supported–simply supported and clamped–clamped homogenous
isotropic circular cylindrical shells. Three-dimensional solution of
the free vibration problem of homogeneous isotropic cylindrical
shells and panels with a certain type of simply supported bound-
ary condition was provided by Soldatos and Hadjigeorgiou [24] by
an iterative approach. Some other contributors in this subject can
be seen in Refs. [25–32]. More detailed and systematic summar-
izations can be seen in the excellent monographs by Leissa and
Qatu [33], Qatu [34] and Soldatos [35].

This review of the existing literature clearly reveals that the
information available for free vibration behavior of thick cylind-
rical shells is far from complete. It appears that most of the
previous studies on the cylindrical shells are confined to specified
classical end conditions. However, a variety of possible elastic
foundation support cases such as cylindrical shells laid on or
placed in a soil medium are usually encountered in practice.
Moreover, the existing solution procedures are often only custo-
mized for a specific set of different end conditions, and thus
typically require constant modifications of the trial functions and
corresponding solution procedures to adapt to different end cases.
As a result, the use of the existing solution procedures will result
in very tedious calculations and be easily inundated with various
classical boundaries and their combinations. Hence, it is necessary
to develop a unified method which is capable of universally
dealing with thick cylindrical shells subjected to general end
conditions and resting on elastic foundations. Unfortunately, to
the best knowledge of the authors, researches efforts on this topic
are very limited. Recently, Malekzadeh et al. [36] presented a
differential quadrature method for solving the free vibration of a
circular cylindrical shell in contact with an elastic medium. Tj et al.
[37] considered free vibrations of cylindrical shells partially buried
in elastic foundations based on the finite element method. Paliwal
et al. [38] studied the free vibrations of thin circular cylindrical shell
on Winkler and Pasternak foundations. The wave propagation

approach is employed by Shah et al. [39] and Liu et al. [40] to solve
the vibrations of fluid-filled isotropic circular cylindrical shells
based on elastic foundations.

In present paper, an improved Fourier series method previously
proposed for the vibration analysis of beams and plates [41–44]
subjected to arbitrary boundary conditions is applied to the
modeling and vibration analysis of 3D cylindrical shells with
general end conditions and resting on elastic foundations, aiming
to provide a unified and reasonable accurate alternative to other
analytical and numerical techniques. The three-dimensional elas-
ticity theory is adopted to formulate the theoretical model. Each
displacements of the cylindrical shell, regardless of boundary
conditions, is expanded as a standard Fourier cosine series
supplemented with four auxiliary functions introduced to ensure
and accelerate the convergence of the series expansions. Since the
displacement field is constructed adequately smooth throughout
the whole solution domain, an accurate solution is obtained by
using Rayleigh–Ritz procedure based on the energy functions of
the shell. As it will become evident in what follows, the present
method is capable of dealing with the vibration problems of thick
cylindrical shells subjected to end conditions of arbitrary type and
general elastic foundations.

2. Theoretical formulations

2.1. Description of the model and kinematic relations

As shown in Fig. 1(a), a thick circular cylindrical shell with
length L, outer radius R1, inner radius R0 (where thickness
h¼R1�R0 and mean radius R¼(R1þR0)/2) is considered in the
present work. A cylindrical coordinate system (x, θ and r) is fixed at
the shell. The x, θ and r axes are taken in the axial, circumferential
and radial directions of the shell, respectively. The corresponding
displacement components at any point of the shell in the axial,
circumferential and radial directions are separately denoted by u, v
and w. The outer surface of the shell is continuously rested on an
elastic foundation represented by the Winkler/Pasternak model, in
which the radial and shear stiffnesses are denoted by Kr and
Kg, respectively, see Fig. 1(c). Based on the 3D shell theory, the
strains during deformation for a thick circular cylindrical shell are
defined as

εx ¼
∂u
∂x

; εθ ¼
∂v
r ∂θ

þw
r
; εr ¼

∂w
∂r

γθr ¼
∂w
r ∂θ

þ∂v
∂r

�v
r
; γxr ¼

∂u
∂r

þ∂w
∂x

; γxθ ¼
∂u
r∂θ

þ∂v
∂x

ð1Þ

where εx, εθ and εr are the normal strains. γθr, γxr and γxθ represent
the shear strains. u, v and w denote the displacement components
in the axial, circumferential and radial directions, respectively.
According to the generalized Hooke's law, the corresponding
stresses are defined as

sx

sθ

sr

τθr

τxr

τxθ

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;

¼

Q11 Q12 Q13 0 0 0
Q12 Q22 Q23 0 0 0
Q13 Q23 Q33 0 0 0
0 0 0 Q44 0 0
0 0 0 0 Q55 0
0 0 0 0 0 Q66

2
6666666664

3
7777777775

εx

εθ

εr

γθr
γxr
γxθ

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;

ð2Þ

where sx, sθ and sr are the normal stresses. τθr, τxr and τxθ
represent the shear stressed. Qij (i, j¼1–6) are the constants
relating stresses with strains. For the isotropic material, they are
defined as

Q11 ¼ Q22 ¼Q33 ¼
Eð1�μÞ

ð1þμÞð1�2μÞ; Q12 ¼ Q13 ¼ Q23 ¼
μE

ð1þμÞð1�2μÞ;
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Q44 ¼Q55 ¼Q66 ¼
E

2ð1þμÞ ð3Þ

where E and μ are Yong's moduli and Poisson's ratio of the
material, respectively.

The boundary conditions of a thick shell can be defined as [33]

s0x�sx ¼ 0; τ0xr�τxr ¼ 0; τ0xθ�τxθ ¼ 0 or u¼ u0; v¼ v0;

w¼w0 ð4Þ

where s0x, τ0xr and τ0xθ are boundary forces. u0, v0 and w0

represent specified displacement functions at the boundary. Thus,
at each of the shell ends, the general end conditions of the thick
shell can be implemented by introducing three groups of con-
tinuously distributed linear springs (ku, kv and kw) which are
continuously distributed along the whole boundary area to sepa-
rately simulate the boundary forces and displacements (see Fig. 1
(b)) without the need of considering of torsional spring. Specifi-
cally, ku0, kv0 and kw0 denote the set of springs distributed at the
edge x¼0 and kuL, kvL and kwL represent the other set at the end
x¼L. Therefore, all the classical homogeneous boundary condi-
tions can be directly obtained by accordingly setting the spring
constants to be extremely large or small. For instance, a clamped
boundary (C) can be readily achieved by simply setting the
stiffnesses of the entire boundary springs equal to infinite (which
is represented by a very large number).

So far, all the needed parts of the 3D small deformation theory
of elasticity are present, and they are combined to obtain the
desired form of the energy expressions.

2.2. Energy expressions

In present work, the energy-oriented Rayleigh–Ritz method is
employed due to the reliability of its results and efficiency in
modeling and solution procedure. Thus, the first task is to define
the energy expressions of the cylindrical shell. The linear elastic

strain energy (UV) of the shell is defined in integral form as:

UV ¼ 1
2

Z L

0

Z R1

R0

Z 2π

0
fεxsxþεθsθþεrsrþγθrτθrþγxrτxrþγxθτxθgr dθ dr dx

ð5Þ
Substituting Eqs. (1)–(3) into Eq. (5), the strain energy function

of the shell can be written in terms of displacement components as

UV ¼ E
4ð1þμÞ

Z L

0

Z R1

R0

Z 2π

0

2μ
1�2μ

∂u
∂xþ ∂v

r∂θþw
r þ ∂w

∂r

� �2þ2 ∂u
∂x

� �2þ ∂w
r∂θþ ∂v

∂r�v
r

� �2
þ2 ∂w

∂r

� �2þ2 ∂v
r∂θþw

r

� �2þ ∂u
r∂θþ ∂v

∂x

� �2þ ∂u
∂rþ ∂w

∂x

� �2
8<
:

9=
;

r dθ dr dx ð6Þ

The potential energy stored in the boundary springs (Psp) and
elastic foundation (Pef) can be depicted as

Psp ¼
1
2

Z R1

R0

Z 2π

0

½ku0u2þkv0v2þkw0w2�jx ¼ 0

þ½kuLu2þkvLv2þkwLw2�jx ¼ L

( )
r dθ dr

Pef ¼
1
2

Z L

0

Z 2π

0
Krw2þKg

∂w
∂x

� �2

þKg
∂w
r∂θ

� �2
( )����

r ¼ R1

R1 dθ dx ð7Þ

and the kinetic energy (T) of the shell is written as

T ¼ ρ

2

Z L

0

Z R1

R0

Z 2π

0

∂u
∂t

� �2

þ ∂v
∂t

� �2

þ ∂w
∂t

� �2
( )

r dθ dr dx ð8Þ

where ρ is the density of the shell. The energy expressions are also
very convenient and efficient in deriving the governing equations
and boundary conditions of a structure. The energy expressions
presented here are applied to obtain the equations of motion.

2.3. Equations of motion

By means of Hamilton's principle, the equations of motion of
the 3D small deformation theory of elasticity of the circular

v
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L o

kv

R

R

L
R

R
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r

R

R

r r

x

Kr

Shear layer
Kg
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Fig. 1. Schematic diagram of a thick circular cylindrical shell: (a) the whole shell; (b) the partial cross-sectional view; (c) in contact with an elastic foundation.
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cylindrical shell in cylindrical coordinates can be written as [33]

L11uþL12vþL13w¼ 2μρ
λ

∂2u
∂t2

L21uþL22vþL23w¼ 2μρ
λ

∂2v
∂t2

L31uþL32vþL33w¼ 2μρ
λ

∂2w
∂t2

ð9Þ

where λ¼ μE=ð1þμÞð1�2μÞ, the coefficients of the linear operator
Lij are given below:

L11 ¼ 2ð1�μÞ ∂2

∂r2
þ1
r
∂
∂r

� 1
r2

� �
þð1�2μÞ 1

r2
∂2

∂θ2
þ ∂2

∂x2

� �

L12 ¼ L21 ¼
1
r

∂2

∂r∂θ
�ð3�4μÞ1

r2
∂
∂θ
; L13 ¼

∂2

∂r ∂x

L22 ¼ ð1�μÞ ∂2

∂r2
þ1
r
∂
∂r

� 1
r2
þ ∂2

∂x2

� �
þ2ð1�μÞ1

r2
∂2

∂θ2

L23 ¼ L32 ¼
1
r

∂2

∂θ∂x
; L31 ¼

∂2

∂r∂x
þ1
r
∂
∂x

L33 ¼ ð1�2μÞ ∂2

∂r2
þ1
r
∂
∂r

þ 1
r2

∂2

∂θ2

� �
þ2ð1�μÞ ∂

2

∂x2
ð10Þ

It is obvious that each of the displacement components at most
has second-order derivatives. The general end conditions of the
thick shell are written as

x¼0: ku0u¼sx; kv0v¼ τxθ ; kw0w¼ τxr
x¼a: kuLu¼ �sx; kvLv¼ �τxθ ; kwLw¼ �τxr

2.4. Admissible displacement functions and the solution procedure.

In order to guarantee convergence to the exact solutions, the
constructing of appropriate admissible displacement functions is of
crucial importance in the Rayleigh–Ritz procedure. For shell problems,
a specially customized set of beam functions are often used as the
displacement functions of the shell for each type of boundary
conditions. As a result, it is inconvenient and very tedious since there
are various types of end and elastic foundation conditions. A remedy
to this problem is using other forms of admissible functions such as
orthogonal polynomials. However, the higher order polynomials tend
to become numerically unstable due to the computer round-off errors
[43]. This numerical difficulty can be avoided by expressing the
displacement functions in the form of a Fourier series expansion
because Fourier functions constitute a complete set and exhibit an
excellent numerical stability. However, when the displacements of the
shell are periodically expressed as conventional Fourier series onto the
entire shell space, discontinuities potentially exist in the original
displacements and their derivatives at the edges except for a few
simple boundary conditions. Suppose a simple linear function
f ðxÞ ¼ cxþd (c, d40) is defined on [0, L]. The extension of f (x) onto
[�L, 0] which is even for the cosine series leads to a function that is
continuous on [�L, ¸L] and has an identical value at x¼7L. Thus, one
obtains a continuous function of period 2L¸ whose Fourier series will
converge everywhere. However, this is not necessarily the case for a
sine series which represents the odd extension of f (x) onto [�L, 0].
Obviously, the new function is piecewise smooth and the correspond-
ing Fourier series only converges to zero at x¼0 and x¼7L. In this
case, the expanded expressions cannot be differentiated term-by-term,
and thus the solution may not converge or converge slowly. The
detailed demonstration can be found in Refs. [41,42].

To overcome this difficulty and satisfy the general boundary
conditions, as well as considering the circumferential symmetry of
the circular cylindrical shell, each displacements components of
the circular cylindrical shell, regardless of boundary conditions, is
expanded as a more robust form of modified Fourier series

expansion:

uðx; θ; r; tÞ ¼Uðx; rÞ cos ðnθÞejωt ; vðx; θ; r; tÞ ¼ Vðx; rÞ sin ðnθÞejωt
wðx; θ; r; tÞ ¼Wðx; rÞ cos ðnθÞejωt ð11Þ
where non-negative integer n represents the circumferential wave
number of the corresponding mode. Distinctly, n¼0 means axi-
symmetric vibration. Rotating the symmetry axes by π/2, another
set of free vibration modes can be obtained, which corresponds to
an interchange of cos (nθ) and sin (nθ) in Eq. (11) and n¼0
representing torsional vibration in such a case [19]. ω denotes
the eigenfrequency of the cylindrical shell and j¼

ffiffiffiffiffiffiffiffi
�1

p
. U(x, r),

V(x, r) and W(x, r) are the robust form of modified Fourier series
expansions, they are defined as [44]

Uðx; rÞ ¼ ∑
1

m ¼ 0
∑
1

q ¼ 0
Amq cos λmx cos λqrþ ∑

1

m ¼ 0
∑
2

l ¼ 1
Ar
lmζlðrÞ cos λmx

þ ∑
2

l ¼ 1
∑
1

q ¼ 0
Ax
lqζlðxÞ cos λqr

Vðx; rÞ ¼ ∑
1

m ¼ 0
∑
1

q ¼ 0
Bmq cos λmx cos λqrþ ∑

1

m ¼ 0
∑
2

l ¼ 1
Br
lmζlðrÞ cos λmx

þ ∑
2

l ¼ 1
∑
1

q ¼ 0
Bx
lqζlðxÞ cos λqr

Wðx; rÞ ¼ ∑
1

m ¼ 0
∑
1

q ¼ 0
Cmq cos λmx cos λqr

þ ∑
1

m ¼ 0
∑
2

l ¼ 1
Cr
lmζlðrÞ cos λmxþ ∑

2

l ¼ 1
∑
1

q ¼ 0
Cx
lqζlðxÞ cos λqr ð12Þ

where λm¼mπ/L and λq¼qπ/h. Amq, Bmq and Cmq denote the Fourier
expanded coefficients for the displacement components in the x, θ
and r directions, respectively. Ar

lm;A
x
lq;B

r
lm;B

x
lq and Cr

lm;C
x
lq are the

corresponding supplemented coefficients. All of them need to be
determined in future. ζlðrÞ, l¼1, 2 represent a set of supplementary
functions defined over [0, h] to take care of any possible disconti-
nuities of the original displacements and their derivatives
throughout the whole shell including the boundaries and then to
effectively enhance the convergence of the results. Similarly,ζlðxÞ
l¼1, 2 are the other set of auxiliary terms respect to variable x.
According to Eq. (10), each of the displacements components at
most has second-order derivatives, thus, it is required that at least
second-order derivatives of these admissible functions exist and
are continuous at any point on the shell. Such requirements can be
readily satisfied by choosing simple polynomials as follows:

ζ1ðxÞ ¼ x
x
L
�1

� 	2
; ζ2ðxÞ ¼

x2

L
x
L
�1

� 	
; ζ1ðrÞ ¼ r

r
h
�1

� 	2
;

ζ2ðrÞ ¼
r2

h
r
h
�1

� 	
ð13Þ

It is easy to verify that

ζ1ð0Þ ¼ ζ1ðLÞ ¼ ζ01ðLÞ ¼ 0; ζ01ð0Þ ¼ 1
ζ2ð0Þ ¼ ζ2ðLÞ ¼ ζ02ð0Þ ¼ 0; ζ02ðLÞ ¼ 1 ð14Þ

Similar conditions exist for the r-related polynomials, ζlðrÞ. It
can be proven mathematically that the modified Fourier series
given in Eq. (12) can be simply differentiated, through term-by-
term, to obtain uniformly convergent series expansions for up to
the second-order derivatives. Also, the series expansions given in
Eq. (12) are able to expand and uniformly converge to any function
including the actual displacements. More information about the
modified Fourier series can be seen in Refs. [14,15,41–44]. Since
the series expression has to be truncated numerically, the pro-
posed solution should be understood as a solution with arbitrary
precision. In actual calculations, we truncate the infinite series
expression to M and Q to obtain the results with acceptable
accuracy.
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It should be remarked here that the modified Fourier series
expressions given in Eq. (12) are complete series defined on the
interval of [0, L] �[0, h]. Thus, a coordinate transformation from r
(for rA[R0, R1], to rA [0, h]) needs to be introduced to implement
the present analysis. Therefore, the robust form of modified
Fourier series expansions given in Eq. (12) is rewritten as

Uðx; rÞ ¼ ∑
1

m ¼ 0
∑
1

q ¼ 0
Amq cos λmx cos λqrþ ∑

1

m ¼ 0
∑
2

l ¼ 1
Ar
lmζlðrÞ cos λmx

þ ∑
2

l ¼ 1
∑
1

q ¼ 0
Ax
lnζlðxÞ cos λqr

Vðx; rÞ ¼ ∑
1

m ¼ 0
∑
1

q ¼ 0
Bmq cos λmx cos λqr

þ ∑
1

m ¼ 0
∑
2

l ¼ 1
Br
lmζlðrÞ cos λmxþ ∑

2

l ¼ 1
∑
1

q ¼ 0
Bx
lnζlðxÞ cos λqr

Wðx; rÞ ¼ ∑
1

m ¼ 0
∑
1

q ¼ 0
Cmq cos λmx cos λqr

þ ∑
1

m ¼ 0
∑
2

l ¼ 1
Cr
lmζlðrÞ cos λmxþ ∑

2

l ¼ 1
∑
1

q ¼ 0
Cx
lnζlðxÞ cos λqr ð15Þ

thus, the energy expressions of the shell are rewritten as

UV ¼ E
4ð1þμÞ

Z L

0

Z h

0

Z 2π

0

2μ
1�2μ

∂u
∂xþ ∂v

ðrþR0Þ∂θþ
w

ðrþR0Þþ
∂w
∂r

� 	2

þ2 ∂u
∂x

� �2þ2 ∂v
ðrþR0Þ∂θþ

w
ðrþR0Þ

� 	2

þ ∂u
ðrþR0Þ∂θþ

∂v
∂x

� 	2
þ ∂u

∂rþ ∂w
∂x

� 	2

þ2 ∂w
∂r

� 	2
þ ∂w

ðrþR0Þ∂θþ
∂v
∂r� v

ðrþR0Þ

� 	2

8>>>>>>>>>><
>>>>>>>>>>:

9>>>>>>>>>>=
>>>>>>>>>>;

ðrþR0Þdθ dr dx ð16Þ

Psp ¼ 1
2

Z h

0

Z 2π

0

½ku0u2þkv0v2þkw0w2�jx ¼ 0

þ½kuLu2þkvLv2þkwLw2�jx ¼ L

( )
ðrþR0Þdθ dr

Pef ¼
1
2

Z L

0

Z 2π

0
Krw2þKg

∂w
∂x

� �2

þKg
∂w

ðrþR0Þ∂θ

� �2
( )

jr ¼ hR1 dθ dx

ð17Þ

T ¼ ρ

2

Z L

0

Z h

0

Z 2π

0

∂u
∂t

� �2

þ ∂v
∂t

� �2

þ ∂w
∂t

� �2
( )

ðrþR0Þdθ dr dx ð18Þ

Once the admissible displacement functions and energy func-
tions of the shell are established, the following task is to determine

Fig. 2. The effect of boundary spring stiffnesses on frequency parameters Ω¼ωR1
ffiffiffiffiffiffiffiffiffi
p=G

p
for a thick cylindrical shell: (a) Γu; (b) Γv; (c) Γw.
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the coefficients in the admissible functions. The Lagrangian energy
function (L) of the shell can be expressed in terms of strain energy,
kinetic energy and potential energy stored in boundary springs
and foundation of the shell system as

L¼ T�UV �Psp�Pef ð19Þ

Substituting Eqs. (16)–(18) into Eq. (19) and minimizing the
total expression of the Lagrangian energy function with respect to
the undetermined coefficients:

∂L
∂α

¼ 0 α¼ Amq;A
r
lm;A

x
lq;Bmq;B

r
lm;B

x
lq;Cmq;C

r
lm;C

x
lq ð20Þ

a total of 3n{(Mþ1)n(Qþ1)þ2n(MþQþ2)} equations related
to corresponding coefficients can be achieved and summed up in
matrix form as

ðK�ω2MÞG¼ 0 ð21Þ
in which K is the stiffness matrix for the structure, M is the mass
matrix. Both of them are symmetric matrixes and they can be

expressed as

K¼

K1;1 K1;2 K1;3 ⋯ K1;9

KT
1;2 K2;2 K2;3 ⋯ K2;9

KT
1;3 KT

2;3 K3;3 ⋯ K3;9

⋮ ⋮ ⋮ ⋱ ⋮
KT

1;9 KT
2;9 KT

3;9 ⋯ K9;9

2
66666664

3
77777775
;

M¼

M1;1 M1;2 M1;3 ⋯ M1;9

MT
1;2 M2;2 M2;3 ⋯ M2;9

MT
1;3 MT

2;3 M3;3 ⋯ M3;9

⋮ ⋮ ⋮ ⋱ ⋮
MT

1;9 MT
2;9 MT

3;9 ⋯ M9;9

2
66666664

3
77777775

ð22Þ

The elements of the sub-matrices Ki;j andMi;j (i, j¼1–9) are given
in Appendix A. G is the vector of unknown coefficients, is written as

G¼ ½Gu;Gv;Gw�T ð23Þ

Table 2
Convergence and comparison of the first nine frequency parameters Ω¼ 2ωR1

ffiffiffiffiffiffiffiffi
p=E

p
for an F–F solid cylinder (L/R1¼4, μ¼0.3, Kr¼0 and Kg¼0).

Method M N Mode number

1 2 3 4 5 6 7 8 9

Liew and Hung [32] 5 5 0.9594 0.9594 0.9742 1.5467 1.7751 1.7751 1.9483 2.5938 2.5938
6 5 0.9594 0.9594 0.9742 1.5467 1.7751 1.7751 1.9483 2.5938 2.5938
5 6 0.9594 0.9594 0.9742 1.5467 1.7751 1.7751 1.9483 2.5938 2.5938
5 7 0.9594 0.9594 0.9742 1.5467 1.7751 1.7751 1.9483 2.5938 2.5938
5 8 0.9594 0.9594 0.9742 1.5467 1.7751 1.7751 1.9483 2.5938 2.5938

Present 5 5 0.9597 0.9597 0.9742 1.5467 1.7767 1.7767 1.9483 2.5979 2.5979
6 5 0.9595 0.9595 0.9742 1.5467 1.7755 1.7755 1.9483 2.5964 2.5964
5 6 0.9597 0.9597 0.9742 1.5467 1.7767 1.7767 1.9483 2.5977 2.5977
5 7 0.9597 0.9597 0.9742 1.5467 1.7767 1.7767 1.9483 2.5976 2.5976
5 8 0.9597 0.9597 0.9742 1.5467 1.7767 1.7767 1.9483 2.5976 2.5976
6 8 0.9595 0.9595 0.9742 1.5467 1.7755 1.7755 1.9483 2.5963 2.5963
7 8 0.9595 0.9595 0.9742 1.5467 1.7753 1.7753 1.9483 2.5943 2.5943
8 8 0.9595 0.9595 0.9742 1.5467 1.7752 1.7752 1.9483 2.5941 2.5941
9 8 0.9595 0.9595 0.9742 1.5467 1.7751 1.7751 1.9483 2.5939 2.5939

10 8 0.9595 0.9595 0.9742 1.5467 1.7751 1.7751 1.9483 2.5938 2.5938
11 8 0.9595 0.9595 0.9742 1.5467 1.7751 1.7751 1.9483 2.5938 2.5938
11 9 0.9595 0.9595 0.9742 1.5467 1.7751 1.7751 1.9483 2.5938 2.5938

Table 1
Convergence of the first ten longitudinal modal frequency parameters Ω¼ωR1

ffiffiffiffiffiffiffiffiffi
p=G

p
for an F–F circular cylindrical shell (R0/R1¼0.5, L/R1¼2, μ¼0.3, Kr¼0 and Kg¼0).

n M�Q Modes

m¼1 m¼2 m¼3 m¼4 m¼5 m¼6 m¼7 m¼8 m¼9 m¼10

1 5�5 1.6042 1.8934 2.4808 2.9315 3.0795 3.2392 4.0290 4.5311 4.6752 5.6873
6�6 1.6041 1.8933 2.4808 2.9312 3.0795 3.2385 4.0286 4.5239 4.6749 5.6623
7�7 1.6041 1.8932 2.4807 2.9312 3.0795 3.2383 4.0285 4.5233 4.6749 5.6607
8�8 1.6041 1.8932 2.4807 2.9311 3.0794 3.2382 4.0284 4.5228 4.6748 5.6600
9�9 1.6041 1.8932 2.4807 2.9311 3.0794 3.2381 4.0284 4.5227 4.6748 5.6598
10�10 1.6041 1.8932 2.4807 2.9311 3.0794 3.2381 4.0284 4.5226 4.6748 5.6597
11�11 1.6041 1.8932 2.4807 2.9311 3.0794 3.2381 4.0284 4.5226 4.6748 5.6597
Ref. [19] 1.6041 1.8932 2.4807 2.9311 3.0794 3.2380 4.0284 4.5225 4.6748 5.6596

2 5�5 0.9702 1.0455 1.9355 2.4982 3.2934 3.4423 4.2660 4.3189 4.7376 5.1825
6�6 0.9701 1.0452 1.9354 2.4981 3.2932 3.4408 4.2656 4.3188 4.7304 5.1814
7�7 0.9701 1.0452 1.9352 2.4981 3.2930 3.4406 4.2655 4.3187 4.7294 5.1814
8�8 0.9700 1.0452 1.9352 2.4981 3.2930 3.4403 4.2654 4.3187 4.7289 5.1813
9�9 0.9700 1.0451 1.9351 2.4981 3.2930 3.4403 4.2654 4.3187 4.7287 5.1813
10�10 0.9700 1.0451 1.9351 2.4981 3.2930 3.4402 4.2654 4.3187 4.7286 5.1812
11�11 0.9700 1.0451 1.9351 2.4981 3.2929 3.4401 4.2654 4.3187 4.7286 5.1812
Ref. [19] 0.9700 1.0451 1.9351 2.4981 3.2929 3.4401 4.2654 4.3187 4.7258 5.1812
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where

Gu ¼ ½A00;…;Amq;…;AMQ ;A
r
10;…;Ar

lm;…;Ar
2M ;A

x
10;…;Ax

lq;…;Ax
2Q �

Gv ¼ ½B00;…;Bmq;…;BMQ ;B
r
10;…;Br

lm;…;Br
2M ;B

x
10;…;Bx

lq;…;Bx
2Q �

Gw ¼ ½C00;…;Cmq;…;CMQ ;C
r
10;…;Cr

lm;…;Cr
2M ;C

x
10;…;Cx

lq;…;Cx
2Q �

The frequencies and modes of the shell can be determined easily
by solving the standard characteristic equation. Once the eigenvector G
is determined for a given frequency, the mode shapes of the shell can
be determined by substituting the coefficients G into the admissible
functions. Even though this study is focused on the free vibration of a
thick cylindrical shell with general end conditions and resting on
elastic foundations, the forced vibration can be readily predicted by
adding the work done by external force in Eq. (19) and summing the
loading vector F of external force on the right side of Eq. (21). Thus, the
characteristic equation for the forced vibration of the shell is readily
obtained.

3. Numerical examples and discussion

With the theoretical formulations described in previous sections,
several vibration results for thick cylindrical shells subjected to
general end conditions and resting on elastic foundations are
presented in this section to illustrate the capacity and reliability of
the current solution. Summarizing, the discussion is arranged as
follows: First of all, end conditions of the shells are defined in terms
of boundary spring parameters. The convergence and efficiency of
the present method is studied and the model is checked by
comparing with results in the open literature. Then, cylindrical shells
with various classical end conditions and their combinations are
studied, and some selected modal shapes are depicted. Influence
of the geometry parameters are discussed as well. Finally, num-
erical results for cylindrical shells resting on elastic foundations
are presented and effects of the foundation coefficients are
investigated.

Table 5
Comparison of frequency parameters Ω¼ωL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1þμÞ=E

p
for a thick cylindrical shell subjected to F–F, C–F and C–C end conditions (h/R¼0.3, μ¼0.3, L/R¼1, Kr¼0, Kg¼0).

Boundary conditions n LW-DQ [36] FEM [36] Present

m¼1 m¼2 m¼3 m¼1 m¼2 m¼3 m¼1 m¼2 m¼3

F–F 1 0.0000 0.0001 1.0710 0.0000 0.0001 1.0734 0.0000 0.0001 1.0709
2 0.2576 0.3800 1.3533 0.2608 0.3831 1.3594 0.2576 0.3799 1.3532
3 0.6884 0.9253 1.8689 0.6890 0.9377 1.8794 0.6884 0.9252 1.8689
4 1.2302 1.5160 2.4754 1.2525 1.5307 2.4917 1.2302 1.5158 2.4753
5 1.8427 2.1343 3.1169 1.8694 2.1532 3.1417 1.8426 2.1341 3.1169

C–F 1 0.7514 1.7563 1.8800 0.7546 1.7692 1.8996 0.7516 1.7569 1.8811
2 0.6620 1.8962 2.1305 0.6713 1.9256 2.1557 0.6622 1.8982 2.1325
3 0.9246 2.0610 2.5165 0.9301 2.0668 2.5482 0.9247 2.0632 2.5179
4 1.4021 2.4030 2.9919 1.4282 2.4646 3.0342 1.4021 2.4052 2.9930
5 1.9814 2.8666 3.5251 2.0228 2.8571 3.5628 1.9814 2.8687 3.5259

C–C 1 1.7860 2.6043 3.4148 1.7972 2.6222 3.4192 1.7911 2.6049 3.4259
2 1.7452 3.2942 3.4921 1.7573 3.3114 3.5150 1.7507 3.2948 3.5027
3 1.8867 3.6024 3.9416 1.8862 3.6320 3.9257 1.8921 3.6111 3.9443
4 2.1966 3.8126 4.2757 2.2072 3.8228 4.3215 2.2012 3.8204 4.2781
5 2.6385 4.1302 4.7010 2.6617 4.1327 4.7322 2.6421 4.1375 4.7028

Table 4
Comparison of frequency parameters Ω¼ωh=π

ffiffiffiffiffiffiffiffiffi
p=G

p
for an S–S circular cylindrical shell (h/R¼0.1, μ¼0.3, Kr¼0, Kg¼0, m¼1).

L/R Present Ref. [31] Ref. [23]

n¼1 n¼2 n¼3 n¼1 n¼2 n¼3 n¼1 n¼2 n¼3

2 0.03099 0.01906 0.01814 0.03100 0.01907 0.01814 0.03100 0.01906 0.01813
1 0.04781 0.03971 0.03642 0.04784 0.03927 0.03643 0.04779 0.03969 0.03641
0.5 0.07616 0.07681 0.07931 0.07618 0.07684 0.07935 0.07607 0.07675 0.07927
0.25 0.20527 0.20801 0.21259 0.20529 0.20802 0.21261 0.20525 0.20800 0.21260

Table 3
Computational time (second) versus number of modes for a thick shell with various boundary conditions (R0/R1¼0.5, L/R1¼2, μ¼0.3, Kr¼0 and Kg¼0, M*Q¼11*11).

Boundary conditions Number of modes

n¼0 n¼1 n¼2

10 20 40 10 20 40 10 20 40

F–F 0.998 0.967 1.062 0.831 1.066 1.170 1.374 0.831 1.101 1.176 1.395
F–S 0.980 0.967 1.029 0.831 1.117 1.183 1.423 0.831 1.114 1.178 1.393
F–C 0.991 0.969 1.046 0.831 1.093 1.188 1.395 0.831 1.099 1.179 1.400
S–S 0.978 1.000 1.237 0.831 1.105 1.194 1.376 0.831 1.093 1.222 1.401
S–C 0.982 0.961 1.076 0.831 1.115 1.183 1.402 0.831 1.105 1.212 1.406
C–C 0.986 0.964 1.039 0.831 1.190 1.189 1.401 0.831 1.086 1.185 1.415
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3.1. Boundary springs study

In the present work, the general end conditions of the shell are
implemented by introducing three groups of continuously distrib-
uted linear springs at each of the shell ends to separately simulate
the boundary forces and displacements. Therefore, arbitrary end
conditions of the shell can be easily generated by assigning the

boundary springs at proper stiffnesses. For instance, a clamped end
(C) can be readily achieved by simply setting the stiffnesses of the
entire springs equal to infinitely large. However, the ‘infinite large’
is represented by a sufficiently large number in actual calculations.
Thus, effects of the restraint stiffness of boundary spring on the
modal characteristics should be investigated. In the first example,
effects of restraint stiffness of boundary springs on a cylindrical

Table 7
Frequency parameters Ω¼ωR1

ffiffiffiffiffiffiffiffiffi
p=G

p
for a solid cylinder subjected to various boundary conditions (L/R1¼3, μ¼0.3, Kr¼0, Kg¼0).

Boundary conditions n Modes

m¼1 m¼2 m¼3 m¼4 m¼5 m¼6 m¼7 m¼8 m¼9

F–F 0 1.6387 2.8098 2.9218 2.9928 3.5003 4.0263 4.0421 4.1601 4.8144
1 1.1761 1.7735 2.5332 2.5900 2.8882 2.9565 3.3410 3.6864 3.7323
2 2.1066 2.1627 2.3501 2.6928 3.3610 3.4066 4.0727 4.0794 4.3616
3 3.2451 3.2594 3.6176 3.7343 4.2021 4.4099 4.8891 4.9062 5.5103

F–S 0 1.6387 2.8112 2.9542 3.4978 3.6679 4.0295 4.1602 4.4405 4.8308
1 0.8735 1.7670 2.1002 2.5561 2.8788 3.0596 3.3121 3.5565 3.9529
2 2.1346 2.3341 2.6802 3.1462 3.3670 3.7409 4.0972 4.4184 4.5041
3 3.2521 3.6041 3.7479 4.1805 4.2956 4.6405 4.8963 5.2209 5.5705

S–S 0 1.6388 2.8131 3.4860 3.5620 3.8317 4.1378 4.2160 4.7026 5.0439
1 0.6359 1.6857 1.8412 2.4635 2.7540 3.0906 3.2352 3.8011 3.9642
2 2.3265 2.6548 3.0542 3.3322 3.4430 4.0781 4.1773 4.6242 4.7389
3 3.5920 3.7590 4.2012 4.2018 4.4615 4.8480 4.9709 5.5621 5.6187

F–C 0 0.8552 2.4002 2.9468 3.3076 3.7457 3.8887 4.3952 4.4361 4.8611
1 0.2638 0.9304 1.9045 2.2904 2.7721 3.0750 3.2094 3.3176 3.8032
2 2.1368 2.3814 2.7657 3.2293 3.6532 3.9018 4.3566 4.4829 4.5628
3 3.2525 3.6288 3.8146 4.1908 4.5449 4.7364 5.1779 5.3807 5.8530

C–C 0 1.7192 3.0658 3.5340 4.0512 4.0879 4.1803 4.8290 5.0242 5.5558
1 0.8980 1.7298 2.5722 2.7659 2.9806 3.4873 3.7056 3.8520 4.3108
2 2.4586 2.7450 3.3803 3.5121 4.2108 4.2134 4.6585 4.7539 5.0998
3 3.6727 3.8483 4.2671 4.4904 4.9127 5.0951 5.6633 5.7372 6.1127

Table 6
Frequency parameters Ω¼ωR1

ffiffiffiffiffiffiffiffiffi
p=G

p
for a circular cylindrical shell subjected to various end conditions (L/R1¼3, R0/R1¼0.5, μ¼0.3, Kr¼0, Kg¼0).

Boundary conditions n Modes

m¼1 m¼2 m¼3 m¼4 m¼5 m¼6 m¼7 m¼8 m¼9

F–F 0 1.6004 2.1554 2.1824 2.3634 2.4640 2.9471 3.6445 3.7409 4.6300
1 1.1605 1.3969 2.0519 2.1411 2.7433 2.8606 2.9513 3.3761 3.3975
2 0.9745 1.0160 1.3782 2.0346 2.7227 2.7289 3.2773 3.5929 4.0668
3 2.2928 2.3236 2.5134 2.9240 3.5036 3.8369 4.2102 4.4111 4.8382

F–S 0 1.6004 2.1630 2.2865 2.4630 2.7998 3.5527 3.6478 4.4368 5.2854
1 0.8407 1.3974 1.7937 2.0657 2.6428 2.7789 3.0641 3.3440 3.5538
2 0.9889 1.2314 1.8777 2.5713 2.8086 3.0404 3.5970 3.7922 4.2595
3 2.3045 2.4502 2.8260 3.4140 3.9055 4.0707 4.3806 4.6416 5.1475

S–S 0 1.6004 2.2215 2.4587 2.6689 3.3739 3.6468 4.2406 5.1896 5.2857
1 0.6230 1.3545 1.5142 2.0230 2.3879 2.8197 3.2155 3.2905 3.6036
2 1.1208 1.6925 2.5267 2.6809 2.9997 3.4561 3.6297 4.3475 4.4260
3 2.3985 2.7268 3.3167 3.9573 4.0832 4.1504 4.6197 4.9488 5.2312

F–C 0 0.8508 2.1155 2.2028 2.4608 2.7831 3.0055 3.6589 4.4440 4.5517
1 0.2675 0.8744 1.6232 1.9137 2.5237 2.7223 3.0192 3.1060 3.5883
2 1.0012 1.2890 1.9536 2.6002 2.9913 3.3269 3.8248 4.0545 4.3593
3 2.3070 2.4767 2.8737 3.4481 3.9510 4.2442 4.5540 4.9430 5.3157

C–C 0 1.6949 2.3123 2.5607 2.8814 3.5910 3.6508 4.4199 5.2192 5.4114
1 0.8157 1.6113 2.1297 2.5317 2.8945 3.3635 3.4640 3.4778 4.3041
2 1.2399 1.8299 2.6428 3.0643 3.5672 3.7992 4.4677 4.5159 4.5571
3 2.4455 2.8198 3.4086 4.1014 4.2571 4.7295 5.0429 5.4104 5.9361
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shell with inner–outer ration R0/R1¼0.5, length–radius ratio
L/R1¼2 and μ¼0.3 is investigated. Assume that the shell is free at
the edge x¼0 whilst the edge x¼L is elastically restrained by only
one group of spring components with various stiffnesses.
For simplicity and convenience in the analysis, three stiffness
parameters Γu, Γv and Γw, which are defined as the ratios of
the corresponding spring stiffnesses to the flexural stiffness

D¼ Eh3= 12ð1�μ2Þ, respectively, are introduced here (i.e. Γu¼
log10(kuL/D), Γv¼ log10(kvL/D) and Γw¼ log10(kwL/D)). In Fig. 2, varia-
tion of the first and ninth modal (n¼2, m¼1, 9) frequency
parameters Ω¼ ωR1

ffiffiffiffiffiffiffiffiffi
p=G

p
of the considered cylindrical shell against

the stiffness parameters Γu, Γv and Γw are depicted, respectively.
From Fig. 2(a), it can be seen that the frequency parameters almost
keep at a level when the stiffness parameter Γu is smaller than 0,

Fig. 3. Mode shapes of a cylindrical shell with F–C boundary conditions.
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the change of the stiffness parameter has little effect on frequency
parameters of the shell. As it further increase, a distinct influence
can be observed, in which the frequency parameters increases
rapidly, when it is beyond 4, the frequency parameters approach
utmost and remain unchanged. The similar tendency can be seen
when the shell is elastically restrained by the circumferential and
radial springs, except that the active ranges of the stiffness para-
meters of the circumferential and radial boundary springs are

shown as [�1, 5] and [�2, 3], see Fig. 2(b) and (c). Generally
speaking, this study shows the active ranges of the boundary
springs stiffness parameters (Γu, Γv and Γw) for the vibration
frequencies of cylindrical shells are different. In this case, they can
be defined as [0, 4], [�1, 5] and [�2, 3], respectively.

In the following discussion, vibration frequencies and modal
shapes of certain circular cylindrical shells with arbitrary classical
end conditions and their combinations will be presented. Taking

Fig. 4. Mode shapes of a cylindrical shell with S–S boundary conditions.
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edge x¼0 for example, the corresponding spring stiffness parameters
for three types of classical end conditions which are commonly
encountered in engineering practices are given as follows:

(1) Free edge (F): Γu¼Γv¼Γw¼0;
(2) Simply supported edge (S): Γu¼0, Γv¼Γw¼7;
(3) Clamped edge (C): Γu¼Γv¼Γw¼7.

The appropriateness of defining the classical end conditions in
terms of boundary spring parameters will be proved by several
examples in later subsections. For the sake of simplicity, a two-
letter string is applied to represent the end conditions of a
cylindrical shell, such as C–F denotes a cylindrical shell subjected
to clamped at end x¼0 and free at end x¼L.

3.2. Convergence and efficiency study

Theoretically, there are infinite terms in the modified Fourier
series solution. However, the series is numerically truncated and
only finite terms are counted in actual calculations. Thus, it is very
important to check its accuracy, convergence and numerical
robustness. Considering the circumferential symmetry of the
circular shell, the convergence is checked in the axial and radial
directions (i.e. x and r). In Table 1, the first ten (m¼1–10)
frequencies for a completely free thick cylindrical shell with seven
truncation schemes (i.e. M¼Q¼5–11) are presented, in which two
circumferential wave numbers (n¼1, 2) are included. For conve-
nience in expression, the dimensionless frequency parameter
Ω¼ ωR1

ffiffiffiffiffiffiffiffiffi
p=G

p
are applied in the analysis. The geometric and

material constants of the shell are: inner–outer ration R0/R1¼0.5,
length–radius ratio L/R1¼2 and μ¼0.3. In all the following
computations, the zero frequencies corresponding to the rigid
body modes were omitted from the results. From Table 1, it is
obvious that the modified Fourier series solution has an excellent
convergence, and it is sufficiently accurate even when only a small
number of terms are included in the series expression. The
maximum difference in the tenth frequency between the 6�6-
term solution and the 11�11-term one is less than 0.38%.
Furthermore, by comparing with results published by Zhou et al.
[19], we can find a very close agreement between these two
results, although different displacement admissible functions and
solution procedures were used in the literature. In order to further
demonstrate the efficiency of the current method, convergence

and comparison of the first nine frequency parameters
Ω¼ 2ωR1

ffiffiffiffiffiffiffiffi
p=E

p
of a solid cylinder (L/R1¼4, μ¼0.3) with comple-

tely free boundary conditions are presented in Table 2. The
solutions obtained by different types of truncation schemes are
compared with those 3D results reported by Liew and Hung [32]
using the Rayleigh–Ritz method based on polynomial functions.
From the table, we can see that the present results are in excellent
agreement with the referential data. The truncation terms of the
method advocated by Liew and Huang [32] are smaller than the
present ones. However, in Ref. [32], a specially customized set of
beam functions are used as the displacement functions of the shell
for each type of boundary conditions. The proposed method offers
a unified solution for all the classical end conditions and the
change of end conditions from one case to another is as easy as
changing structural parameters without the need of making any
change to the solution procedure. Moreover, from Table 3, where
computational time versus number of modes (by the implicitly
restarted Arnoldi algorithm) for a thick shell (R0/R1¼0.5, L/R1¼2,
μ¼0.3, M�Q¼11�11) subjected to different boundary conditions
is presented, we can see that the current modified Fourier series
Ritz method is very efficient. The frequency results of the shell are
calculated by the MATAB software on a laptop. The configuration
of the computer is: Inter Core2 Duo CPU (2.1 GHz) and 2 GB RAM.
Although the number of modes is as much as 40, the computing
time is less than 1.423 s.

To further validate the accuracy and reliability of current
solution, more numerical examples will be presented. In each
case, the convergence study is performed and for brevity purposes,
only the converged results are presented here.

3.3. Thick cylindrical shells with arbitrary classical ends

In this subsection, the present formulations are applied to
study the free vibrations of thick cylindrical shells with arbitrary
classical end conditions and their combinations. In Table 4, the
natural frequencies which are expressed in terms of non-
dimension parameters, Ω¼ωh=π

ffiffiffiffiffiffiffiffi
ρ=G

p
of moderately thick iso-

tropic S–S cylindrical shells are compared to those available in the
literature for lower-mode numbers i.e. n¼1, 2, 3 and m¼1. Exact
3D elasticity results provided by Armenakas et al. [31] and Khalili
et al. [23] are included in the comparison. Four kinds of length–
radius ratios L/R¼2, 1, 0.5, 0.25 are considered in the comparison

Table 8
Frequency parameters Ω¼ωR1

ffiffiffiffiffiffiffiffiffi
p=G

p
for a circular cylindrical shell with various end conditions and thickness–radius ratios (L/R1¼2, μ¼0.3, Kr¼0, Kg¼0).

h/R1 n F–F S–S C–C

m¼1 m¼2 m¼3 m¼1 m¼2 m¼3 m¼1 m¼2 m¼3

0.05 1 1.2672 1.4412 1.6177 0.9719 1.0258 1.4737 1.0060 1.5069 1.7332
2 0.0683 0.0902 1.0210 0.5614 1.1513 1.4972 0.6725 1.2036 1.5878
3 0.1926 0.2275 0.7448 0.4058 0.9157 1.3480 0.5318 1.0001 1.4579

0.15 1 1.3227 1.5364 1.9623 0.9859 1.0823 1.6553 1.0691 1.8234 2.5040
2 0.2237 0.2851 1.1892 0.6533 1.4293 2.1644 0.8332 1.6270 2.5060
3 0.6198 0.7129 1.2392 0.8306 1.4833 2.3242 0.9710 1.6926 2.6142

0.25 1 1.3864 1.6529 2.2547 1.0069 1.1467 1.8896 1.1469 2.1524 2.6702
2 0.4050 0.4944 1.4251 0.8198 1.7896 2.2925 1.0491 2.0479 3.2003
3 1.0837 1.2080 1.7891 1.3328 2.1124 3.2015 1.4760 2.3379 3.4729

0.35 1 1.4617 1.7662 2.3293 1.0319 1.2207 2.1156 1.2213 2.3901 2.7076
2 0.6119 0.7116 1.6544 1.0235 2.1236 2.4374 1.2708 2.3586 3.3272
3 1.5619 1.6855 2.2606 1.8271 2.6557 3.6460 1.9614 2.8435 4.0345

0.45 1 1.5521 1.8581 2.4239 1.0583 1.3066 2.3073 1.2835 2.5262 2.7783
2 0.8441 0.9330 1.8501 1.2430 2.4048 2.5977 1.4877 2.5824 3.4796
3 2.0444 2.1351 2.6422 2.2989 3.1127 3.8596 2.4241 3.2561 4.4263
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Fig. 5. Some selected mode shapes (F–F, n¼3, m¼1–3) in the end x¼0 of a thick shell with various thicknesses.
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as well. The geometric and material constants of the shell are: h/
R¼0.1, μ¼0.3. From the table, we can see that the present results
agree well with the referential data. The discrepancy is very small
and does not exceed 1.11% for the worst case. The small discre-
pancy may be attributed to the different solution approaches were
used in the literature. Furthermore, it can be seen from the table
that the frequency parameters of the shells increase with length–
radius ratio L/R decrease.

For the sake of completeness, in Table 5, the first three modal
(m¼1–3) frequency parameters Ω¼ ωL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1þμÞ=E

p
for a thick cylind-

rical shell subjected to F–F, C–F and C–C end conditions are compared
to exact 3D elasticity results provided by Malekzadeh et al. [36] based
on LW-DQ and FEM methods. Five circumferential wave numbers
(n¼1–5) are included in the comparison. The geometric and material
properties of the considered shell are given as: h/R¼0.3, L/R¼1 and
μ¼0.3. Through comprising, it is obvious that the present solutions
match very well with results given by Malekzadeh et al. [36]. The
small deviations in the results are caused by different computation
methods were used in the literature.

The excellent agreements of comparisons between the pro-
posed solutions and the published results for cylindrical shells
with F–F, S–S, C–C and C–F end conditions separately given in
Tables 1 and 2 and Tables 4 and 5 indicate that the present analysis
is accurate. Having gained confidence in present method, some
further numerical results are given in the following presentation.

In Tables 6 and 7, the first nine modal (m¼1–9, n¼0–3)
frequency parameters Ω¼ ωR1

ffiffiffiffiffiffiffiffiffi
p=G

p
of a circular cylindrical shell

subjected to five different classical end combinations (i.e. F–F, F–S,
S–S, F–C and C–C) are presented, respectively. The material
parameters and geometric constants of the investigated shells
are: L/R1¼3, μ¼0.3 R0/R1¼0.5 or R0/R1¼0 (solid). It is shown that
the frequency parameters of the shells increase with the boundary
restraints get rigid and the frequency parameters for the solid
cylinder are higher than the hollow one. In fact, from Eq. (21), the
eigenfrequencies and eigenvectors are simultaneously obtained.
For each eigenfrequency, the corresponding eigenvector contains

entire expanded and supplemented coefficients. By substituting
the eigenvector into the admissible displacement functions (Eq.
(12)), the corresponding modal shape of the considered shell can
be easily determined. In Figs. 3 and 4, the corresponding modal
shapes for the lowest six longitudinal modal frequencies given in
Table 6 that the considered cylindrical shell with F–C and S–S
boundary conditions are plotted, respectively. From the figures,
the vibration behaviors of the shell can be seen vividly.

Then let us look into the influence of thickness–radius ratio
h/R1 on natural frequencies of cylindrical shells with various end
conditions. In Table 8, the first three modal (m¼1–3) frequencies
which are expressed in terms of dimensionless parameters,
Ω¼ωR1

ffiffiffiffiffiffiffiffiffi
p=G

p
of a circular cylindrical subjected to F–F, S–S and

C–C end conditions and different thickness–radius ratios are given,
in which three circumferential wave numbers (n¼1–3) are
included. Five different thickness–radius ratios considered in the
analysis are: h/R1¼0.05, 0.15, 0.25, 0.35 and 0.45. Form Table 8, it
can be seen that the frequency parameters of the shell mono-
tonically increase as the thickness–radius ratio increases. In Fig. 5,
some selected mode shapes (F–F, n¼3, m¼1–3) in the end x¼0 of
the thick shell with various thicknesses are presented.

The above numerical examples are presented as circular
cylindrical shells with arbitrary classical end conditions and their
combinations. It is obvious that the frequency parameters and
modal shapes of the circular cylindrical shells subjected to general
end conditions and their combinations can be determined easily
by the modified Fourier series method. In the next section, our
work will focus on thick cylindrical shells resting on elastic
foundations with general end conditions

3.4. Thick cylindrical shells resting on elastic foundations

As we know, a variety of possible elastic foundation support cases
such as cylindrical shells completely or partly placed in (or laid on) a
soil medium are usually encountered in engineering applications and
the vibration analyses of these shells with such boundary conditions

Fig. 6. Variation of frequency parameters δΩ versus foundation coefficients for a moderately thick cylindrical shell with C–F end condition: (a) Kr (Kg¼0); (b) Kg (Kr¼0).
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are necessary and of great significance. Thus, in this part, the present
formulations are used to investigate the free vibration behaviors of
thick cylindrical shells resting on elastic foundations with arbitrary
end conditions. Unless otherwise stated, the material and geometric
constants of the shell considered in the following discussion are:
L/R1¼2, R0/R1¼0.8 and μ¼0.3.

First, let us consider the effects of variation of foundation
coefficients on the frequencies of the considered cylindrical shell
with different end conditions. For simplicity and convenience in
the analysis, frequency parameters δΩ which are defined as the
differences of the corresponding non-dimensional frequency para-
meters Ω¼ ωR1

ffiffiffiffiffiffiffiffiffi
p=G

p
to those of the foundation coefficients equal

to zero (i.e.δΩ¼Ω Kr ;Kgj �Ω Kr ¼ 0;Kg ¼ 0j ) are introduced here. In
Fig. 6(a), the variation of the lowest three longitudinal modal
(m¼1, 2, 3) frequency parameters δΩ of the considered shell with
C–F end condition against the foundation coefficient Kr (Kg¼0) are
depicted. It is clear that there is little variation in frequency
parameters δΩ as the value of the foundation coefficient Kr
increasing from 0 to 108 N/m. As it further increase, a distinct
influence can be observed, in which the frequency parameters
increases rapidly, when Kr is bigger than 1013 N/m, the frequency
parameters δΩ approach their utmost and remain unchanged. In
Fig. 6(b), the variation of the lowest three modal (m¼1, 2, 3)
frequency parameters δΩ against the other foundation coefficient
Kg (Kr¼0) are presented. The variation traces of the frequency
parameter δΩ are similar to Fig. 6(a). In Fig. 7, the variation of the
frequency parameters δΩ against the foundation coefficient Kr and
Kg for the shell subjected to C–C end condition are presented,
respectively. Comparing Figs. 6 and 7, it can be seen that influence
of the foundation coefficients on the frequency parameters of the
shell varying with circumference numbers and end conditions as
well. In addition, increase of the stiffness of the foundation causes
the frequency parameters to increase.

Then, let us look into the shell resting on an elastic foundation
with one coefficient equal to infinite. In Table 9, the first three
(n¼1, 2, 3, m¼1, 2, 3) modal frequency parameters Ω¼ ωR1

ffiffiffiffiffiffiffiffiffi
p=G

p

for the circular cylindrical shell resting on elastic foundation with
one coefficient equal to infinite (assigned as 1014 N/m or N/rad)
and the other one change from 0 to extremely large (assigned as
1014 N/m or N/rad) are presented. Two different end conditions
included in the computations are C–F and C–C. In the table, it can
be seen that the varying of the coefficient has little effect on
frequency parameters of the shell and the shell is thought to be
rigidly restrained in the out surface in such case. At last, some
further numerical results for cylindrical shells subjected to differ-
ent kinds of end conditions are given in the following presenta-
tion. In Table 10, the first three (m¼1–3) frequency parameters
Ω¼ ωR1

ffiffiffiffiffiffiffiffiffi
p=G

p
for the first five circumferential wave numbers

(n¼1–5) of the circular cylindrical shell subjected to three differ-
ent classical end conditions (i.e. F–F, S–S, and C–C) resting on
elastic foundations are presented. It is shown that the frequency
parameters of the shells increase with the boundary restraints get
more rigid.

Table 9
Frequency parameters Ω¼ωR1

ffiffiffiffiffiffiffiffiffi
p=G

p
for a cylindrical shell with C–F and C–C end

conditions and different foundation coefficients (L/R1¼2, R0/R1¼0.8, μ¼0.3).

n m C–F, Kg¼1014 C–F, Kr¼1014 C–C, Kg¼1014 C–C, Kr¼1014

Kr¼0 Kr¼1014 Kg¼0 Kg¼1014 Kr 0 Kr¼1014 Kg¼0 Kg¼1014

1 1 1.4527 1.4527 1.4527 1.4527 2.4197 2.4197 2.4196 2.4197
2 1.9757 1.9757 1.9757 1.9757 2.6552 2.6552 2.6551 2.6552
3 3.0667 3.0667 3.0667 3.0667 3.8115 3.8115 3.8115 3.8115

2 1 2.1456 2.1456 2.1456 2.1456 3.0836 3.0836 3.0836 3.0836
2 3.3763 3.3763 3.3763 3.3763 3.8654 3.8654 3.8653 3.8654
3 4.2383 4.2383 4.2383 4.2383 4.9399 4.9399 4.9398 4.9399

3 1 3.0948 3.0948 3.0947 3.0948 3.8738 3.8738 3.8738 3.8738
2 4.1871 4.1871 4.1871 4.1871 4.9159 4.9159 4.9158 4.9159
3 5.2828 5.2828 5.2827 5.2828 6.0078 6.0078 6.0078 6.0078

Fig. 7. Variation of frequency parameters δΩ versus foundation coefficients for a moderately thick cylindrical shell with C–C end condition: (a) Kr (Kg¼0); (b) Kg (Kr¼0).

T. Ye et al. / International Journal of Mechanical Sciences 84 (2014) 120–137 133



4. Conclusions

A unified 3D elasticity method has been developed for the free
vibration analysis of circular cylindrical shells subjected to general
end conditions and resting on elastic foundations. The energy
variational principle is employed to derive the formulation based
on the 3D elasticity theory. Each of the shell displacements,
regardless of boundary conditions, is constructed as a standard
Fourier cosine series supplemented with several auxiliary func-
tions introduced to eliminate all the possible discontinuities with
the original displacement and its derivatives throughout the entire
shell space including the boundaries at the edges and accelerate
the convergence of series representations. The efficiency, accuracy
and reliability of present method are illustrated for free vibration
analysis of moderately thick and thick circular cylindrical shells
with different end conditions, with respect to various parameters
such as the length–radius ratio and the inside–outside radius ratio.
Numerical results produced by proposed method are found in
excellent agreement with those available in open literature. The
method described in this paper is believed to include several
advantages: first, it is a unified 3D elasticity method which can be
used to predict the natural vibration characteristics of thick
circular cylindrical shells subjected to arbitrary end conditions
and elastic foundation supports accurately; second, the proposed
method offers an easy analysis operation for the entire restraining
conditions and the change of end conditions from one case to
another is as easy as changing structure parameters without the
need of making any change to the solution procedure; finally,
new results for different foundation coefficients with various
end conditions are presented, which may serve as benchmark
solutions.
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Appendix A. Detailed expressions for the stiffness matrix K
and mass matrix M

The detailed expressions of the stiffness and mass matrixes in
Eq. (21) are given as follows. To make the expressions simple and
clear, six indexes are pre-defined:

e¼ qþðQþ1Þnmþ1; f ¼mþðMþ1Þnðl�1Þþ1

e0 ¼ q0 þðQþ1Þnm0 þ1; f 0 ¼m0 þðMþ1Þnðl0 �1Þþ1

g¼ qþðQþ1Þnðl�1Þþ1 g0 ¼ q0 þðQþ1Þnðl0 �1Þþ1
The elements in the stiffness matrix K are calculated according

to the following formulations:

fK1;1ge;e0 ¼
E

1�μ2
C11
cc D

001
cc E00cc þ

E
2ð1þμÞðC

00
cc D

111
cc E00cc þC11

cc D
00�1
cc E11cc Þ

þ½ku0þkuLð�1Þmþm0 �D001
cc E00cc

fK1;2gf ;e0 ¼
E

1�μ2
C11
cc D

001
ζc E00cc þ

E
2ð1þμÞðC

00
cc D

111
ζc E00cc þC11

cc D
00�1
ζc E11cc Þ

þ½ku0þkuLð�1Þmþm0 �D001
ζc E00cc

fK1;3gg;e0 ¼
E

1�μ2
C11
ζc D

001
cc E00cc þ

E
2ð1þμÞðC

00
ζc D

111
cc E00cc þC11

ζc D
00�1
cc E11cc Þ

fK1;4ge;e0 ¼
μE2

1�μ2
C01
cc D

000
cc E10sc þ

E
2ð1þμÞC

10
cc D

000
cc E01sc

fK1;5gf ;e0 ¼
μE2
1�μ2

C01
cc D

000
ζc E10sc þ

E
2ð1þμÞC

10
cc D

000
ζc E01sc

fK1;6gg;e0 ¼
μE2
1�μ2

C01
ζc D

000
cc E10sc þ

E
2ð1þμÞC

10
ζc D

000
cc E01sc

fK1;7ge;e0 ¼
μE2

1�μ2
ðC01

cc D
000
cc E00cc þC01

cc D
101
cc E00cc Þþ

E
2ð1þμÞC

10
cc D

011
cc E00cc

fK1;8gf ;e0 ¼
μE2
1�μ2

ðC01
cc D

000
ζc E00cc þC01

cc D
101
ζc E00cc Þþ

E
2ð1þμÞC

10
cc D

011
ζc E00cc

fK1;9gg;e0 ¼
μE2
1�μ2

ðC01
ζc D

000
cc E00cc þC01

ζc D
101
cc E00cc Þþ

E
2ð1þμÞC

10
ζc D

011
cc E00cc

fK2;2gf ;f 0 ¼
E

1�μ2
C11
cc D

001
ζζ E00cc þ

E
2ð1þμÞðC

00
cc D

111
ζζ E00cc þC11

cc D
00�1
ζζ E11cc Þ

þ½ku0þkuLð�1Þmþm0 �D001
ζζ E00cc

fK2;3gg;f 0 ¼
E

1�μ2
C11
ζc D

001
cζ E00cc þ

E
2ð1þμÞðC

00
ζc D

111
cζ E00cc þC11

ζc D
00�1
cζ E11cc Þ

fK2;4ge;f 0 ¼
μE2
1�μ2

C01
cc D

000
cζ E10sc þ

E
2ð1þμÞC

10
cc D

000
cζ E01sc

fK2;5gf ;f 0 ¼
μE2
1�μ2

C01
cc D

000
ζζ E10sc þ

E
2ð1þμÞC

10
cc D

000
ζζ E01sc

fK2;6gg;f 0 ¼
μE2
1�μ2

C01
ζc D

000
cζ E10sc þ

E
2ð1þμÞC

10
ζc D

000
cζ E01sc

Table 10
Frequency parameters Ω¼ωR1

ffiffiffiffiffiffiffiffiffi
p=G

p
for a cylindrical shell with various end conditions and foundation coefficients (L/R1¼2, R0/R1¼0.8, μ¼0.3).

Foundation coefficients n F–F S–S C–C

m¼1 m¼2 m¼3 m¼1 m¼2 m¼3 m¼1 m¼2 m¼3

Kr¼1�1011

Kg¼0
1 0.6622 1.3880 2.0953 1.1134 1.7210 2.7904 1.9960 2.6355 3.0244
2 1.6625 2.1439 2.3693 2.1459 2.2265 2.7323 2.4027 2.7938 3.2987
3 2.4174 2.4976 2.6214 2.5181 2.8906 3.3390 2.6406 3.0358 3.8288
4 2.8463 2.8790 3.0828 2.9193 3.2670 3.9530 2.9880 3.4085 4.1587
5 3.3626 3.4297 3.6906 3.4735 3.8298 4.4894 3.5174 3.9449 4.6610

Kr¼0
Kg¼1�1011

1 0.7263 1.3891 2.3503 1.1134 1.8657 3.2382 2.3026 2.6554 3.7891
2 1.8424 2.5473 3.5700 2.2265 2.6688 3.8017 3.0786 3.7335 4.9035
3 2.9483 3.2873 4.5104 3.3390 3.6543 4.5274 3.8666 4.8723 5.9786
4 4.0236 4.1854 5.3027 4.4507 4.6957 5.3931 4.8171 5.6987 6.8038
5 5.0762 5.1536 6.1742 5.5613 5.7610 6.3375 5.8376 6.5671 7.5720
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fK2;7ge;f 0 ¼
μE2
1�μ2

ðC01
cc D

000
cζ E00cc þC01

cc D
101
cζ E00cc Þþ

E
2ð1þμÞC

10
cc D

011
cζ E00cc

fK2;8gf ;f 0 ¼
μE2

1�μ2
ðC01

cc D
000
ζζ E00cc þC01

cc D
101
ζζ E00cc Þþ

E
2ð1þμÞC

10
cc D

011
ζζ E00cc

fK2;9gg;f 0 ¼
μE2
1�μ2

ðC01
ζc D

000
cζ E00cc þC01

ζc D
101
cζ E00cc Þþ

E
2ð1þμÞC

10
ζc D

011
cζ E00cc

fK3;3gg;g0 ¼
E

1�μ2
C11
ζζ D

001
cc E00cc þ

E
2ð1þμÞðC

00
ζζ D

111
cc E00cc þC11

ζζ D
00�1
cc E11cc Þ

fK3;4ge;g0 ¼
μE2
1�μ2

C01
cζ D

000
cc E10sc þ

E
2ð1þμÞC

10
cζ D

000
cc E01sc

fK3;5gf ;g0 ¼
μE2
1�μ2

C01
cζ D

000
ζc E10sc þ

E
2ð1þμÞC

10
cζ D

000
ζc E01sc

fK3;6gg;g0 ¼
μE2
1�μ2

C01
ζζ D

000
cc E10sc þ

E
2ð1þμÞC

10
ζζ D

000
cc E01sc

fK3;7ge;g0 ¼
μE2
1�μ2

ðC01
cζ D

000
cc E00cc þC01

cζ D
101
cc E00cc Þþ

E
2ð1þμÞC

10
cζ D

011
cc E00cc

fK3;8gf ;g0 ¼
μE2
1�μ2

ðC01
cζ D

000
ζc E00cc þC01

cζ D
101
ζc E00cc Þþ

E
2ð1þμÞC

10
cζ D

011
ζc E00cc

fK3;9gg;g0 ¼
μE2
1�μ2

ðC01
ζζ D

000
cc E00cc þC01

ζζ D
101
cc E00cc Þþ

E
2ð1þμÞC

10
ζζ D

011
cc E00cc

fK4;4ge;e0 ¼
E

1�μ2
C00
cc D

00�1
cc E11ss þ

E
2ð1þμÞC

00
cc E

00
ss ðD111

cc �D010
cc �D100

cc þD00�1
cc Þ

þ E
2ð1þμÞC

11
cc D

001
cc E00ss þ½kv0þkvLð�1Þmþm0 �D001

cc E00ss

fK4;5gf ;e0 ¼
E

1�μ2
C00
cc D

00�1
ζc E11ss þ

E
2ð1þμÞC

00
cc E

00
ss ðD111

ζc �D010
ζc �D100

ζc þD00�1
ζc Þ

þ E
2ð1þμÞC

11
cc D

001
ζc E00ss þ½kv0þkvLð�1Þmþm0 �D001

ζc E00ss

fK4;6gg;e0 ¼
E

1�μ2
C00
ζc D

00�1
cc E11ss þ

E
2ð1þμÞC

00
ζc E

00
ss ðD111

cc �D010
cc �D100

cc

þD00�1
cc Þþ E

2ð1þμÞC
11
ζc D

001
cc E00ss

fK4;7ge;e0 ¼
E

1�μ2
C00
cc D

00�1
cc E01cs þ

μE2
1�μ2

C00
cc D

100
cc E01cs

þ E
2ð1þμÞC

00
cc E

10
cs ðD010

cc �D00�1
cc Þ

fK4;8gf ;e0 ¼
E

1�μ2
C00
cc D

00�1
ζc E01cs þ

μE2
1�μ2

C00
cc D

100
ζc E01cs

þ E
2ð1þμÞC

00
cc E

10
cs ðD010

ζc �D00�1
ζc Þ

fK4;9gg;e0 ¼
E

1�μ2
C00
ζc D

00�1
cc E01cs þ

μE2
1�μ2

C00
ζc D

100
cc E01cs

þ E
2ð1þμÞC

00
ζc E

10
cs ðD010

cc �D00�1
cc Þ

fK5;5gf ;f 0 ¼
E

1�μ2
C00
cc D

00�1
ζζ E11ss þ

E
2ð1þμÞC

00
cc E

00
ss ðD111

ζζ �D010
ζζ �D100

ζζ þD00�1
ζζ Þ

þ E
2ð1þμÞC

11
cc D

001
ζζ E00ss þ½kv0þkvLð�1Þmþm0 �D001

ζζ E00ss

fK5;6gg;f 0 ¼
E

1�μ2
C00
ζc D

00�1
cζ E11ss þ

E
2ð1þμÞC

00
ζc E

00
ss ðD111

cζ �D010
cζ �D100

cζ þD00�1
cζ Þ

þ E
2ð1þμÞC

11
ζc D

001
cζ E00ss

fK5;7ge;f 0 ¼
E

1�μ2
C00
cc D

00�1
cζ E01cs þ

μE2
1�μ2

C00
cc D

100
cζ E01cs

þ E
2ð1þμÞC

00
cc E

10
cs ðD010

cζ �D00�1
cζ Þ

fK5;8gf ;f 0 ¼
E

1�μ2
C00
cc D

00�1
ζζ E01cs þ

μE2
1�μ2

C00
cc D

100
ζζ E01cs

þ E
2ð1þμÞC

00
cc E

10
cs ðD010

ζζ �D00�1
ζζ Þ

fK5;9gg;f 0 ¼
E

1�μ2
C00
ζc D

00�1
cζ E01cs þ

μE2
1�μ2

C00
ζc D

100
cζ E01cs

þ E
2ð1þμÞC

00
ζc E

10
cs ðD010

cζ �D00�1
cζ Þ

fK6;6gg;g0 ¼
E

1�μ2
C00
ζζ D

00�1
cc E11ss þ

E
2ð1þμÞC

00
ζζ E

00
ss ðD111

cc �D010
cc

�D100
cc þD00�1

cc Þþ E
2ð1þμÞC

11
ζζ D

001
cc E00ss

fK6;7ge;g0 ¼
E

1�μ2
C00
cζ D

00�1
cc E01cs þ

μE2
1�μ2

C00
cζ D

100
cc E01cs

þ E
2ð1þμÞC

00
cζ E

10
cs ðD010

cc �D00�1
cc Þ

fK6;8gf ;g0 ¼
E

1�μ2
C00
cζ D

00�1
ζc E01cs þ

μE2
1�μ2

C00
cζ D

100
ζc E01cs

þ E
2ð1þμÞC

00
cζ E

10
cs ðD010

ζc �D00�1
ζc Þ

fK6;9gg;g0 ¼
E

1�μ2
C00
ζζ D

00�1
cc E01cs þ

μE2
1�μ2

C00
ζζ D

100
cc E01cs

þ E
2ð1þμÞC

00
ζζ E

10
cs ðD010

cc �D00�1
cc Þ

fK7;7ge;e0 ¼
E

1�μ2
C00
cc E

00
cc ½D00�1

cc þD111
cc �þ μE2

1�μ2
C00
cc E

00
cc ½D010

cc þD100
cc �

þ E
2ð1þμÞ½C

00
cc D

00�1
cc E11cc þC11

cc D
001
cc E00cc �þ½kw0

þkwLð�1Þmþm0 �D001
cc E00cc þR1Krð�1Þnþn0

C00
cc E

00
cc

þR1Kgð�1Þnþn0
C11
cc E

00
cc þR1Kgð�1Þnþn0

C00
cc E

11
cc

fK7;8gf ;e0 ¼
E

1�μ2
C00
cc E

00
cc ½D00�1

ζc þD111
ζc þμD010

ζc þμD100
ζc �

þ E
2ð1þμÞ½C

00
cc D

00�1
ζc E11cc þC11

cc D
001
ζc E00cc �

fK7;9gg;e0 ¼
E

1�μ2
C00
ζc E

00
cc ½D00�1

cc þD111
cc �þ μE2

1�μ2
C00
ζc E

00
cc ½D010

cc þD100
cc �

þ E
2ð1þμÞ½C

00
ζc D

00�1
cc E11cc þC11

ζc D
001
cc E00cc �þR1Krð�1Þnþn0

C00
ζc E

00
cc

þR1Kgð�1Þnþn0
C11
ζc E

00
cc þR1Kgð�1Þnþn0

C00
ζc E

11
cc

fK8;8gf ;f 0 ¼
E

1�μ2
C00
cc E

00
cc ½D00�1

ζζ þD111
ζζ þμD010

ζζ þμD100
ζζ �

þ E
2ð1þμÞ½C

00
cc D

00�1
ζζ E11cc þC11

cc D
001
ζζ E00cc �

fK8;9gg;f 0 ¼
E

1�μ2
C00
ζc E

00
cc ½D00�1

cζ þD111
cζ þμD010

cζ þμD100
cζ �

þ E
2ð1þμÞ½C

00
ζc D

00�1
cζ E11cc þC11

ζc D
001
cζ E00cc �

fK9;9gg;g0 ¼
E

1�μ2
C00
ζζ E

00
cc ½D00�1

cc þD111
cc �þ μE2

1�μ2
C00
ζζ E

00
cc ½D010

cc þD100
cc �

þ E
2ð1þμÞ½C

00
ζζ D

00�1
cc E11cc þC11

ζζ D
001
cc E00cc �þR1Krð�1Þnþn0

C00
ζζ E

00
cc
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þR1Kgð�1Þnþn0
C11
ζζ E

00
cc þR1Kgð�1Þnþn0

C00
ζζ E

11
cc

and the elements in the stiffness matrix M are calculated accord-
ing to the following formulations:

fM1;1ge;e0 ¼ ρC00
cc D

001
cc E00cc ; fM1;2gf ;e0 ¼ ρC00

cc D
001
ζc E00cc ;

fM1;3gg;e0 ¼ ρC00
ζc D

001
cc E00cc

fM2;2gf ;f 0 ¼ ρC00
cc D

001
ζζ E00cc ; fM2;3gg;f 0 ¼ ρC00

ζc D
001
cζ E00cc ;

fM3;3gg;g0 ¼ ρC00
ζζ D

001
cc E00cc

M1;4;M1;5;…M1;8;M1;9 ¼ 0; M2;4;M2;5;…M2;8;M2;9 ¼ 0;
M3;4;M3;5;…M3;8;M3;9 ¼ 0

fM4;4ge;e0 ¼ ρC00
cc D

001
cc E00ss ; fM4;5gf ;e0 ¼ ρC00

cc D
001
ζc E00ss ;

fM4;6gg;e0 ¼ ρC00
ζc D

001
cc E00ss

fM5;5gf ;f 0 ¼ ρC00
cc D

001
ζζ E00ss ; fM5;6gg;f 0 ¼ ρC00

ζc D
001
cζ E00ss ;

fM6;6gg;g0 ¼ ρC00
ζζ D

001
cc E00ss

M4;7;M4;8;M4;9;M5;7;M5;8;M5;9;M6;7;M6;8;M6;9 ¼ 0

fM7;7ge;e0 ¼ ρC00
cc D

001
cc E00cc ; fM7;8gf ;e0 ¼ ρC00

cc D
001
ζc E00cc ;

fM7;9gg;e0 ¼ ρC00
ζc D

001
cc E00cc

fM8;8gf ;f 0 ¼ ρC00
cc D

001
ζζ E00cc ; fM8;9gg;f 0 ¼ ρC00

ζc D
001
cζ E00cc ;

fM9;9gg;g0 ¼ ρC00
ζζ D

001
cc E00cc

where

Cab
cc ¼

Z L

0

da cos λmx
dxa

db cos λm0x
dxb

dx;

Cab
ζc ¼

Z L

0

daζlðxÞ
dxa

db cos λm0x
dxb

dx

Cab
cζ ¼

Z L

0

da cos λmx
dxa

dbζl0 ðxÞ
dxb

dx;

Cab
ζζ ¼

Z L

0

daζlðxÞ
dxa

dbζl0 ðxÞ
dxb

dx

Dabc
cc ¼

Z h

0

da cos λqr
dra

db cos λq0 r

drb
ðrþR0Þcdr;

Dabc
ζc ¼

Z h

0

daζlðrÞ
dra

db cos λq0 r

drb
ðrþR0Þcdr

Dabc
cζ ¼

Z h

0

da cos λr
dra

dbζl0 ðrÞ
drb

ðrþR0Þcdr;

Dabc
ζζ ¼

Z h

0

daζlðrÞ
dra

dbζl0 ðrÞ
drb

ðrþR0Þcdr

Eabcc ¼
Z 2π

0

da cos ðnθÞ
dθa

db cos ðnθÞ
dθb

dθ;

Eabss ¼
Z 2π

0

da sin ðnθÞ
dθa

db sin ðnθÞ
dθb

dθ

Eabcs ¼
Z 2π

0

da cos ðnθÞ
dθa

db sin ðnθÞ
dθb

dθ;

Eabsc ¼
Z 2π

0

da sin ðnθÞ
dθa

db cos ðnθÞ
dθb

dθ

where daf ðξÞ=dξa represents the a-order derivative of function f(ξ)
with respect to ξ (ξ¼x,θ or r).
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