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ABSTRACT 

 

Modular vehicle (MV) technology offers the possibility of flexibly adjusting the 

vehicle capacity by docking/undocking modular pods into vehicles of different sizes 

en route to satisfy passenger demand. Based on the MV technology, a modular transit 

network system (MTNS) concept is proposed to overcome the mismatch between 

fixed vehicle capacity and spatially varying travel demand in traditional public 

transportation systems. To achieve the optimal MTNS design, a mixed-integer 

nonlinear programming model is developed to balance the tradeoff between the 

vehicle operation cost and the passenger trip time cost. The nonlinear model is 

reformulated into a computationally tractable linear model. The linear model solves 

the lower and upper bounds of the original nonlinear model to produce a near-optimal 

solution to the MTNS design. This reformulated linear model can be solved with 

off-the-shelf commercial solvers (e.g., Gurobi). Two numerical examples in different 

contexts are used to demonstrate the applicability of the proposed model and its 

effectiveness in reducing system costs. 
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ABSTRACT 5 
Modular vehicle (MV) technology offers the possibility of flexibly adjusting the vehicle capacity by 6 
docking/undocking modular pods into vehicles of different sizes en route to satisfy passenger demand. 7 
Based on the MV technology, a modular transit network system (MTNS) concept is proposed to 8 
overcome the mismatch between fixed vehicle capacity and spatially varying travel demand in 9 
traditional public transportation systems. To achieve the optimal MTNS design, a mixed-integer 10 
nonlinear programming model is developed to balance the tradeoff between the vehicle operation cost 11 
and the passenger trip time cost. The nonlinear model is reformulated into a computationally tractable 12 
linear model. The linear model solves the lower and upper bounds of the original nonlinear model to 13 
produce a near-optimal solution to the MTNS design. This reformulated linear model can be solved with 14 
off-the-shelf commercial solvers (e.g., Gurobi). Two numerical examples in different contexts are used 15 
to demonstrate the applicability of the proposed model and its effectiveness in reducing system costs. 16 
 17 
Keywords: public transit; modular vehicle; operational design; mixed-integer nonlinear programming 18 
 19 

1. Introduction 20 

Most current public transportation systems (e.g., mass transit) adopt vehicles with fixed capacities 21 
that cannot adapt to the temporal and spatial variations in travel demand. This mismatch between vehicle 22 
capacity and travel demand causes either excessive passenger waiting (e.g., in areas with a high demand 23 
relative to the vehicle capacity) or low vehicle occupancy (e.g., in areas with a high vehicle capacity 24 
relative to the demand). 25 

 26 

    27 
Figure 1 MV concepts proposed by (a) NEXT (source: https://www.next-future-mobility.com) and (b) Ohmio LIFT 28 
(source: https://ohmio.com).  29 

Emerging modular vehicle (MV) technology holds the promise of overcoming these issues. The MV 30 
technology allows modular pods to be dynamically docked/undocked into vehicles of different sizes en 31 
route (Figure 1; Chen et al., 2019, 2020). This technology have been tested by multiple companies, such 32 
as NEXT (Next Future Transport, 2019) and Ohmio LIFT (Ohmio, 2018). We propose a modular transit 33 
network system (MTNS) that uses the MV technology. In the MTNS system, MVs that operate in a 34 
transportation network can be quickly reassembled at nodes (or stations) to obtain different capacities 35 
that suit the downstream travel demand. With flexible vehicle capacity adjustment, the MTNS can 36 



 

2 

effectively reduce the passenger waiting time (by forming long MV chains) and improve the vehicle 1 
occupancy (by forming short MV chains) to overcome the limitations of traditional public transportation 2 
systems. According to the economies of scale in urban mass transportation, the travel cost of a vehicle is 3 
usually a concave function of the number of modular pods in it (Chen et al., 2020). As a result, this 4 
MTNS has potentials in reducing the system operation cost.  5 

We aim to optimally allocate and schedule an MV fleet over a general transportation network to 6 
achieve the optimal balance between operating cost and passenger trip time cost. Decisions include the 7 
dispatch frequency and vehicle capacity for each dispatch. To better verify the utility of the MTNS, we 8 
compare it with two benchmark systems: the fixed-capacity shuttle bus system (FSBS) and the 9 
passenger car system (PCS). The FSBS can be considered a special case of the MTNS, where each 10 
vehicle has a fixed capacity and provides transportation service without intermediate stops. The FSBS is 11 
used mostly in areas where bus stops are sparse and scattered; in these areas, there is a low economic 12 
incentive for intermediate stops because of the long detour distance. Since the capacities of the vehicles 13 
are fixed, the performance of the FSBS may be limited if the passenger demand exhibits considerable 14 
spatial variation. Specifically, the FSBS may not fully utilize the vehicle capacity in places with low 15 
demand, and it may not be able to serve all passengers in places with intensive demand. In contrast, the 16 
vehicle capacity in a general MTNS is adjustable to passenger demand. Therefore, the MTNS better fits 17 
varying passenger demand by dynamically adjusting the vehicle capacity. Further, vehicles in a PCS are 18 
private passenger cars (or taxis) with a small fixed capacity. The advantage of a PCS is service 19 
convenience for individual travelers (e.g., direct door-to-door service and no waiting and transfer times). 20 
However, a PCS may be the most expensive system, since more vehicles are required to serve the same 21 
demand. A detailed comparison of the three systems is provided in Table 1. 22 

Table 1 Comparison of alternative systems 23 
 MTNS FSBS PCS 

Overall cost 
Operation cost; 

Waiting time cost; 
Riding time cost 

Operation cost; 
Waiting time cost; 
Riding time cost 

Operation cost; 
Riding time cost 

Transfer cost Considered Considered No 

Transfer mode Walk In-vehicle transferred No 

Vehicle type Flexible capacity Fixed capacity Fixed capacity 

Occupancy 6	passengers/pod 36~48	passengers/bus 1~4	passengers/car 
Vehicle length 
(48 passengers)  

Flexible; small per passenger 
 

Fixed; small per passenger Fixed; long per passenger 
Note: Data and figure source: https://www.next-future-mobility.com 24 

A class of related studies has focused on designing a transit system to serve a transportation 25 
network. However, few studies have investigated the design of MTNSs in the literature. Most current 26 
studies have focused on transportation network design to provide comprehensive services to an urban 27 
area (Almasi et al., 2018; Cepeda et al., 2006; Daganzo, 2010; Fan et al., 2018; Guo et al., 2017; 28 
Nourbakhsh and Ouyang, 2012; Tong and Wong, 1999; Wu et al., 2016). The goal is to minimize the 29 
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total system cost, which includes the operation costs (Alshalalfah and Shalaby, 2012; Diana et al., 2006; 1 
Nourbakhsh and Ouyang, 2012; Pei et al., 2019a; Quadrifoglio et al., 2006, 2007, 2008), trip time costs 2 
(Niu et al., 2015; Pei et al., 2019b; Quadrifoglio et al., 2008), accessibility (Nassir et al., 2016; Owen 3 
and Levinson, 2015), etc. For example, Ortega and Wolsey (2003) investigated an incapacitated fixed-4 
charge network flow problem to minimize the network design costs and passenger flow costs. Daganzo 5 
(2010) analyzed the structure of urban transit networks to increase accessibility. Ouyang et al. (2014) 6 
used the continuum approximation technique to design bus networks for cities where the travel demand 7 
gradually varies in space. The authors proposed heterogeneous route configurations to reduce the costs 8 
for both bus users and the operating agency. Tong et al. (2015) developed an urban transit network 9 
design model to maximize the number of accessible activity locations in a space-time network within a 10 
given travel time budget. Despite these fruitful developments, most existing transit network design 11 
studies have only considered vehicles with fixed capacity. 12 

Few recent studies have investigated MV operations in transit systems. Table 2 briefly summarizes 13 
these studies. Most of these studies propose a variable-capacity operation approach with modular transits 14 
based on the MV concept. Guo et al. (2018) proposed a simulation-based model to design a many-to-one 15 
(M-to-1) system in the MV context. (Chen et al., 2019, 2020) proposed both discrete and continuous 16 
models to design an MV shuttle system under oversaturated traffic conditions. Rau et al. (2019) 17 
proposed a dynamic autonomous road transit system by varying the number of modular pods in each 18 
vehicle. Zhang et al.(2020) mathematically modeled an MV transit system with a time-expanded 19 
network to reduce the size of the optimization problem. Shi et al. (2020) proposed a variable-capacity 20 
operation approach for two corridors that shared a portion of stations. Caros and Chow (2020) proposed 21 
a two-sided day-to-day learning framework to simulate the performance of a mobility service using 22 
modular autonomous vehicles capable of en-route passenger transfers. Dai et al., (2020) proposed a joint 23 
design of bus capacity and dispatch headway in a mixed traffic environment that consisted of both 24 
human-driven vehicles and MVs. Despite these pioneering explorations, most studies have only 25 
considered a shuttle system or a transit line, and vehicle dispatching for the proposed MTNS has not 26 
been well studied. Although one may be easily tempted by the idea of solving the MTNS design with 27 
existing methods because we only must jointly design the service frequency and capacity of each shuttle 28 
route, the problem under investigation is much more complicated for two reasons. First, a network 29 
consists of multiple lines, so there are interactions among different lines (e.g., transfer). These 30 
interactions are not modeled in transit line/shuttle studies, so the existing methods cannot be directly 31 
used. Second, the problem of designing one transit line is NP-hard (Liu and Ceder, 2017; Sayarshad and 32 
Chow, 2015; Wang and Qu, 2015), so most studies have simply proposed heuristics to solve near-33 
optimal solutions. A network model is a harder NP-hard problem due to many more decision variables 34 
(since there are more lines and transfer decisions) and constraints (since we must add constraints to 35 
describe the interactions of different lines). Thus, most existing solution algorithms for transit network 36 
designs likely fail due to the dramatic increase in solution space. 37 

Table 2 Comparison of the current related models and the proposed model 38 

Paper 
Objective 
function 

Decision 
variable(s) 

Model 
type* 

Constraint 
type 

Vehicle 
type 

Vehicle 
rebalance 

System 
topology 

Model 
approach 

Niu et al. 
(2015) 

Passenger 
waiting time 

Timetable, 
dwelling 
time, and 
speed profile 

MINLP 
Linear 
constraints 

Fixed-
capacity 
vehicle 

No Corridor 
Mathematical 
programming 
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Chen et al., 
(2020, 
2019) 

Operation 
cost; 
passenger 
waiting time 

Timetable 
and vehicle 
types 

MILP 
& CA 

Linear 
constraints 

MV No Shuttle 

Mathematical 
programming 
& analytical 
model 

Guo et al. 
(2018) 

Myopic policy 
cost 

Switching of 
transit 
service 

- 
Linear 
constraints 

MV No 
M-to-1 
network 

Simulation 

Rau et 
al.,(2019) 

Effective use 
of capacity 

Adaptive 
Fleet Size 

- - MV No Network Simulation 

Caros and 
Chow(202
0) 

operator cost 
and user cost  

En-route 
transfer 

MILP - MV No 
Hub-and-
spoke 

Simulation/ 
insertion 
heuristic 

Zhang et 
al.(2020) 

Number of 
served 
requests 

Timetable; 
vehicle 
types; 
module 
match 

MILP 
Linear 
constraints 

MV No Network 
Mathematical 
programming 

Shi et al. 
(2020) 

Operation 
cost; 
passenger 
waiting time 

Timetable; 
vehicle types 

MILP 
Nonlinear 
constraints 

MV No Corridor 
Mathematical 
programming 

Dai et al., 
(2020) 

Operation 
costs; waiting 
time 

scheduling 
and capacity 

MINLP 
Linear 
constraints 

MV No Corridor 
Mathematical 
programming 

Our 
model 

Operation 
cost; total time 
cost 

Transfer 
strategies; 
vehicle types 

MINLP 
Linear 
constraints 

MV Considered Network 
Mathematical 
programming 

Note: MINLP=mixed-integer nonlinear programming; MILP=mixed-integer linear programming; CA=continuum approximation 1 

To bridge these gaps and achieve the vision of MTNSs, this paper proposes a mathematical 2 
approach to describe MTNS operations and determine the optimal MTNS design. The contributions of 3 
this paper are as follows. 4 

First, previous works predominately focus on transit systems with fixed capacitated vehicles. Only 5 
few studies have considered flexible capacity operations in transit shuttles or corridors. Our work 6 
proposes an innovative MV services in a transit network and jointly designs the dispatch headway and 7 
vehicle capacity in this network. 8 

Second, we formulate this new problem into a new model with significant differences from the 9 
existing models in model structures. This model adds vehicle capacity decisions into the complicated 10 
transit network design problem, where interactions among different transit lines must be considered. As 11 
a result, the solution space of the problem is dramatically increased. Furthermore, the objective function 12 
of the model is nonlinear, so a mixed-integer nonlinear program is difficult to directly solve. We 13 
mathematically revise the formula to produce a computationally tractable linear model and solve both 14 
lower and upper bounds of the original nonlinear model to yield a near-optimal solution. 15 

Third, numerical examples yield valuable managerial insights into the impacts of the proposed new 16 
transportation mode. Specifically, the MTNS is shown to be more cost effective than fixed capacity bus 17 
services in a suburban area and private car services in a highway system in China. The MTNS reduces 18 
the total system costs and critical system components (e.g., operation cost and waiting time cost) in both 19 
systems. The experiments also verify that the linearized model successfully solves near-optimal 20 
solutions to the investigated problem within an acceptable amount of time. 21 
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The remainder of this paper is organized as follows. Section 2 introduces the operation 1 
characteristics, notation, concept, and assumptions of the proposed MTNS. Section 3 presents the MTNS 2 
model with alternative systems. Section 4 tests the proposed model with two numerical examples in 3 
China and conducts sensitivity analyses. Finally, Section 5 provides the conclusions and recommends 4 
future research directions. 5 

2. MTNS operation description 6 

This section introduces the MTNS and underlying assumptions. For the convenience of the readers, 7 
the notations used throughout the paper are summarized in Table 3. 8 

Table 3 Notations 9 
Sets  �  Set of service stations (nodes),	� ≔ �1,… , �� � Set of MV types, � ≔ �1,⋯ , �� � Set of a sequence of numbers, � ≔ �1,… , � 
Parameters !, ", #, $ Service station index, !, ", #, $ ∈ � & MV type index, & ∈ � ' Sequence number index, ' ∈� ( Capacity of a single MV pod !" Link !" index for a link starting from station ! ending at station ", !, " ∈ � )*+ Distance of link !", km ,*+ Passenger demand from origin ! ∈ � and destination " ∈ � -*+. Traffic capacity (i.e., the maximum rate of passing vehicles) on link !" specific for type-& MVs -*+ Traffic capacity on link !", -/0 1 max.∈�	 -/0. 4. Unit-distance operation cost for type-& MV, & ∈ �, $/km 45 Value of time per passenger, $/h 46787 Unit-distance operation cost of the fixed-capacity shuttle bus system (FSBS), $/km 49:7 Unit-distance operation cost of the passenger car system (PCS), $/km ; Constant MV operating speed, km/h < Transfer cost per passenger, $/h => Waiting time of the 'th segment in the linearized model,	' ∈ �, h  ?@A7 System cost of the MTNS ($) ?6787 System cost of the FSBS ($) ?9:7 System cost of the PCS ($) 
Decision variables B/0. Continuous variable; type-& MV dispatch rate from stations # to $, B/0. ∈ CD, #, $ ∈ �, & ∈ � E/0. Binary variable; E/0. 1 1  if MVs from station #  to station $  are type & ; otherwise, E/0. 1 0 . #, $ ∈�, and	& ∈ � G*+/0 Continuous variable; Number of passengers traveling from stations ! and " use MVs from stations # to $ 

along their routes; G*+/0 ∈ CD, and	!, ", #, $ ∈ �. H/0> Binary variable; H/0> ∈ �0,1�, H/0> 11 if the waiting time of MVs from stations # to $ is in the range 

segment '; otherwise, H/0> 1 0.	#, $ ∈ �, and	' ∈ � I*+/0 Continuous variable; total waiting time of passengers traveling from stations ! to " that use MVs from 

stations # to $ along their routes; I*+/0 1 G*+/0 ∑ H/0>=>>∈� ∈ CD, and	!, ", #, $ ∈ �.   B/0K  Continuous variable; shuttle bus dispatch rate from stations # to $; B/0K ∈ CD, and	#, $ ∈ �. B*+L  Continuous variable; passenger car flow rate from stations ! to "; B*+L ∈ CD, and	!, " ∈ �. 
Note: CD denotes the set of nonnegative real numbers. 10 

As Figure 2 shows, the MTNS operation is a 3-step process: collecting travel requests, optimizing 11 
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dispatch strategies, and providing services. First, passengers send their travel requests with their origins 1 
and destinations to a central processing system. Second, the integrated requests are fed into an 2 
optimization model (which will be presented in the next section) to solve the optimal dispatch strategy 3 
(i.e., the dispatch headway and MV types) and passenger itineraries (i.e., the MVs in which a passenger 4 
must ride to travel from the origin to the destination). Next, the optimal dispatch strategy is used to 5 
instruct system operations, and the passenger itineraries are sent to the passengers. Passengers will travel 6 
according to the optimized itineraries. Unlike the existing transit systems, the proposed MTNS adopts a 7 
fully automated passenger transfer process. Before an MV reaches a transfer station, the passengers who 8 
head to a destination station will be informed to walk to a modular pod that will eventually travel to that 9 
station if there is one. Thus, the passengers do not have to all alight the vehicle for transferring, which is 10 
expected to decrease the transfer hassle.  11 

Passenger

MTNS

MV

Travel request
Origin

Destination

Integrate travel 
requests

Solve model: obtain 

dispatch strategies

Dispatch headway and MV types

Passenger itineraries

Instruct system operations

Optimal dispatch strategy

Passenger optimized itineraries

Automated passenger transfer process

STEP 1:

  Collect travel requests

STEP 2: 

  Dispatch strategies

STEP 3: 

  Provide services

Follow 
instruction

Transfer by her/hiself

Stay on seat and transfer 
automatically

 12 
Figure 2 Operation process in the MTNS 13 

The MTNS operates in a transportation network that consists of a set of stations (or nodes) �, which 14 
are indexed as ! ∈ � and distributed in space, and a set of links that connect pairs of stations. We denote 15 
a link starting from station ! ∈ � and ending at station " ∈ � as (!, ") and its length as )*+. Let ,*+  denote 16 
the passenger demand from origin ! ∈ � to destination " ∈ �, and we assume that this demand remains 17 
constant throughout the investigated period in this problem. We denote the set of MV types that can be 18 
dispatched to serve the passengers as � ≔ �1,⋯ , ��, which are indexed as & ∈ �. A type-& MV has & 19 
modular pods and a capacity of &(, where ( is the capacity of a single pod. During the operation, MVs 20 
flexibly adjust the vehicle capacity via docking/undocking to satisfy the passenger demand. This process 21 
can be manually or, in the future, automatically controlled. 22 

To better understand the potential benefits of the MTNS, let us consider a simple illustrative 23 
example. Figure 3 shows an example with five service stations (� 1 �1,… ,5�) and six types of MVs 24 (� 1 �1,⋯ ,6�). In this figure, on each link between two stations, the arrows of different colors represent 25 
different MV types, and the line weights represent the MV dispatch frequencies. The OD pairs and 26 
sampled demands associated with station 4 are listed in Table 4. The optimal operation strategy of 27 
station 4 is also presented in Table 4. Some passengers take direct MVs without transfers (e. g. , 1 →28 4, 2 → 4, 5 → 4, 4 → 1, and	4 → 5), and other passengers make multiple transfers to complete the trip 29 
(e. g. , 3 → 5 → 4, 4 → 5 → 1, 4 → 5 → 2, 4 → 5 → 3). Moreover, passengers with identical origins and 30 
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destinations may take multiple routes. For example, for OD 4 → 1, 7.79% of passengers take route 4 →1 5 → 1 with an average waiting time of 0.154 h for the first segment and 0.22 h for the second segment, 2 
and 92.21% of passengers instead take route 4 → 1 with an average waiting time of 0.154 h.  3 

Table 4 Optimal operation strategies for station 4 4 

1

2 3

4

5

Station

s=2

s=6

s=1

s=4
s=5

s=3

Number of pots

OD 
pairs 

Demands 
(STU) 

Optimal 
operation 
strategies 

Optimal 
vehicle type 

(V) 
Average waiting 

time (
WX∗Z[\V) 1 → 4 22 1 → 4 2 0.198 2 → 4 15 2 → 4 1 0.2 3 → 4 10 3 → 5 → 4 4; 4 0.42; 0.22 5 → 4 23 5 → 4 4 0.22 4 → 1 21 4 → 1 1 0.154 4 → 5 → 1 6; 4 0.154; 0.22 4 → 2 45 4 → 5 → 2 6; 4 0.154; 0.218 4 → 3 11 4 → 5 → 3 6; 5 0.154; 0.211 4 → 5 22 4 → 5 6 0.22 

Figure 3 Illustration of optimal MTNS operations 5 

Finally, to facilitate the model formulation, we introduce the following assumptions in the 6 
investigated problem.  7 

Assumption 1. The demands are stationary over the investigated time period. The assumption of 8 
static traffic flow patterns is commonly adopted in transportation network modeling. Moreover, the 9 
passenger arrival follows the random distribution. Thus, the average passenger waiting time is half of the 10 
headway, which has been widely used in the waiting time cost estimation (Ansari Esfeh et al., 2020).  11 

Assumption 2. All passengers waiting at a station follow the transfer policy specified in the MTNS. 12 
Each link !" has a traffic capacity (i.e., the maximum rate of passing vehicles) -*+. specific to each type-13 &  MV. Since different types of MVs have different lengths, MVs may have type-specific traffic 14 
capacities on the same link.  15 

Assumption 3. Only one type of MVs can operate on a link. This assumption is made to ensure the 16 
computational tractability of the model. This assumption is reasonable, since a stationary traffic flow on 17 
a link is likely associated with one optimal MV configuration.  18 

Assumption 4. Each station has sufficient space to store the reserved pods to off-set local demand 19 
perturbations at the station. This assumption ensures that each station always dispatch MVs on schedule 20 
according to the optimal dispatch frequency, even with local demand perturbations, and ensures that the 21 
pods are sufficient. Thus, we do not pose a fleet size constraint on the system operation and can dispatch 22 
as many vehicles as necessary. We also do not have to consider the vehicle dwell time and the cost for 23 
vehicle purchase and maintenance. The fleet planning problem is relevant, but it belongs to the planning 24 
stage and can be separated from the operational problem. The optimal fleet size can be determined after 25 
the operational plan has been solved. 26 

Assumption 5. Congestion is not considered, since only a small portion of the demand takes the 27 
proposed service, which will hardly impact the road network congestion patterns. Thus, the system 28 
design will not affect the travel time of each link. 29 

3. Methodology 30 

This section provides model formulations for the investigated and related benchmark systems. 31 
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3.1 Model formulation for the MTNS system 1 

3.1.1 Original model formulation 2 

The investigated problem involves optimizing the vehicle dispatch strategy (specified by B/0. and 3 E/0.) and passenger itineraries (specified by G*+/0) to minimize the total system cost. We first introduce 4 
the following decision variables in the MTNS:  5 
• B/0.: Continuous variable B/0. denotes the dispatch rate of type-& MVs from stations # to $. We assume 6 

that the traffic demand on any link is much higher than the capacity of an MV; thus, without 7 
much loss of generality, B/0. is set as a continuous decision variable.  8 

• G*+/0: Continuous variable G*+/0 denotes the rate of passengers who travel from stations ! and " using 9 
MVs from stations # to $ along their routes. This flexible notation allows a passenger to transfer 10 
across multiple MV links to complete a trip if it is favorable for the passenger.  11 

• E/0.: Binary variable E/0. denotes whether the MVs from stations # to $ are type &. If yes, E/0. 1 1; 12 
otherwise, E/0. 1 0.  13 

Objective function 14 

The objective function formulated in Equation (1) aims to minimize the overall system cost, which 15 
consists of two components: operation cost and passenger trip time cost. The passenger trip time cost 16 
can be calculated by the passenger waiting cost, riding time cost (in-vehicle travel cost), and transfer 17 
penalties. Let 4.  denote the operation cost of each type-s MV per unit distance; the operation cost 18 
includes the MV depreciation, maintenance, infrastructure investment, electricity, and fuel costs. With 19 
the unit-distance operation cost 4. , the unit-time operation cost for all type-& MVs in the system is 20 
simply a product of 4. and the total travel distance per unit time, ∑ B/0.)/0/∈�,0∈� . This operation yields 21 
the system operation cost as ∑ 4.B/0.)/0/∈�,0∈�,.∈� , as the first term of Equation (1) specifies. Let 45 22 
denote the value of time per passenger. With this, the passenger trip time cost, including the passenger 23 
waiting time and riding time, is formulated as the second term of Equation (2). Specifically, the average 24 

waiting time of a passenger riding an MV on link #$ is 
]^∑ _`abb∈� , where ∑ B/0..∈�  is the MV dispatch 25 

frequency on link #$  (Assumption 1). For mathematical convenience, we define 
]^∑ _`abb∈�  as a large 26 

value when ∑ B/0..∈�  approaches 0. Next, with a constant MV operating speed ;, the riding time for a 27 

passenger riding an MV on link #$ is 
c`ad . Furthermore, let < denote the extra cost for a passenger to 28 

make one additional transfer to capture hassles during the transfer process. The extra cost due to the 29 
splitting and reassembling operations of MVs can be included in parameter <. Thus, the total transfer 30 
cost for the passenger throughout the trip is the product of < and the total number of transfers. During a 31 
trip, a passenger makes exactly one additional transfer at each leg except the first leg, so the total 32 
number of transfers throughout the passenger’s trip is ∑ G*+/0*∈�,+∈�,/e*∈�,0∈� . This approach yields the 33 
transfer penalty as the third term in Equation (1). Although the en-route transfer operations of MV may 34 
reduce the transfer hassle, passengers may still have to wait before the vehicle leaves the transfer station 35 
because of the asynchrony. Thus, objective function (1) incorporates the costs related to the transfer 36 
process, which include the transfer cost caused by the transfer time (which is incorporated in the waiting 37 
time cost) and transfer inconvenience cost (which is formulated as the transfer penalty component in the 38 
objective function). These components also quantify the tradeoff between serving passengers with more 39 
direct services (i.e., more vehicles) and more transfers (i.e., fewer vehicles) in the system.  40 
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min_`ab,ghi`a,j`ab ?@A7 ≔ k 4.B/0.)/0/∈�,0∈�,.∈� l k 45G*+/0 m 12∑ B/0..∈� l )/0; n*∈�,+∈�,/∈�,0∈�l k <G*+/0*∈�,+∈�,/e*∈�,0∈�  

(1) 

Constraints 1 

We consider four groups of constraints in the MTNS: vehicle capacity Constraint (2), pod 2 
conservation Constraint (3), passenger flow conservation Constraints (4)-(6), and unique MV type 3 
Constraints (7)-(8).  4 k G*+/0*∈�,+∈� okB/0.&(.∈�  ∀#, $ ∈ � Vehicle capacity 

constraint 
(2) 

k B/0.&/∈�\�0�,.∈� 1 k B0/.&/∈�\�0�,.∈�  ∀	$ ∈ � Pod conservation 
constraint  

(3) 

k G*+*00∈�\�*� 1 ,*+  ∀!, " ∈ � Passenger flow 
conservation constraint 

(4) 

k G*+/+/∈�\�+� 1 ,*+  ∀!, " ∈ � Passenger flow 
conservation constraint 

(5) 

kG*+/0/∈� 1kG*+0//∈�  ∀	$ ∈ �\�!, "�, !, " ∈ � Passenger flow 
conservation constraint 

(6) 

kE/0..∈� 1 1 ∀#, $ ∈ � Unique MV type 
constraint 

(7) 

B/0. o E/0.-/0. ∀#, $ ∈ �, & ∈ � 
Unique MV type 
constraint 

(8) 

B/0. ∈ CD ∪ �0� ∀#, $ ∈ �, and	& ∈ � Variable domain (9) G*+/0 ∈ CD ∪ �0� ∀!, ", #, $ ∈ � Variable domain (10) E/0. ∈ s ∀#, $ ∈ �, and	& ∈ � Variable domain (11) 

Constraint (2) is the vehicle capacity constraint, which mandates that for each link #$, the total MV 5 
capacity (shown on the right-hand side, abbr. RHS) is sufficient to serve all passengers using this link 6 
(shown on the left-hand side, abbr. LHS). Constraint (3) involves the conservation of the MV pods 7 
circulating in the system; i.e., the total number of MV pods that arrive at each station $ (LHS) is identical 8 
to the total number of MV pods that depart from station $ per unit time (RHS). This pod conservation 9 
constraint ensures that the vehicles are balanced; i.e., the total number of modular pods in the system 10 
remains constant throughout the operation. However, the vehicle balance does not necessarily equate to 11 
passenger flow balance, so the model allows imbalanced passenger flows at a station. Constraints (4), 12 
(5), and (6) are related to the conservation of passenger flows. Constraint (4) requires all passengers 13 
traveling between origin ! and destination " must leave origin !. Likewise, Constraint (5) imposes that all 14 
passengers traveling between origin !  and destination "  must arrive at destination " . Constraint (6) 15 
indicates that for each station $, the number of passengers arriving at station $ (LHS) must equal that 16 
leaving station $  (RHS). Constraint (7) limits only one type of MV to serve link #$ . Constraint (8) 17 
specifies that the MV flow on each link should not exceed the traffic capacity. Constraints (9), (10) and 18 
(11) are the variable domains. 19 
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3.1.2 Linearization approximation 1 

In objective function (1), the waiting time cost term ∑ 45G*+/0 ]^∑ _`abb∈�*∈�,+∈�,/∈�,0∈�  is biconvex, 2 

since both ∑ G*+/0*∈�,+∈�,/∈�,0∈�  and ∑ ]^∑ _`abb∈�/∈�,0∈�  are convex functions of the corresponding decision 3 

variables. It is commonly known that mathematical programming problems with biconvex terms are 4 
difficult to directly solve (Gorski et al., 2007; Liberti and Pantelides, 2006). To facilitate the solution 5 
approach, this section reformulates the waiting time cost component as a linear term via two steps. 6 

Step 1: Bilinear model reformulation 7 

We first reformulate the waiting time cost term as a bilinear term by dividing the feasible region of 8 
the waiting time into   segments. We construct a arithmetic sequence =], =^, … , => , … , =@ that satisfies 9 =] o ]^∑ _`abb∈� t =@. This sequence can be dynamically changed to reach a lower approximation error 10 

(i.e., the difference between approximated and original objective values). Then, we introduce binary 11 
variables H/0> ≔ �0,1�, #, $ ∈ �,' ∈ � to denote whether the waiting time of MVs on link #$ is in the 12 

range of the 'uv  segment. In other words, we set H/0> 1 1	 if ∃' ∈ �\� �, &. x. => o ]^∑ _`abb∈� t13 =>D];  otherwise, H/0> 1 0 . Then, 
]^∑ _`abb∈�  is linearized to ∑ H/0>=>>∈� , and 14 ∑ 45G*+/0 ]^∑ _`abb∈�*∈�,+∈�,/∈�,0∈�  in the original objective function is reformulated to a bilinear component 15 ∑ 45G*+/0 ∑ H/0>=>>∈�*∈�,+∈�,/∈�,0∈�  subject to linearization Constraints (12)-(15). Constraint (12) 16 

postulates that the waiting time can occupy one and only one segment of the time intervals with H/0> 117 1, e.g., z=> , =>D]). Let -/0 denotes the traffic capacity on link !" (-/0 1 max.∈�	 -/0.). As Assumption 2 18 

shows, each link #$ has a traffic capacity -/0. (i.e., the maximum rate of passing vehicles) specific to 19 
type &. Constraints (13) and (14) specify that the value of 2∑ B/0..∈7 	falls above 1/=>D] and below 20 

(inclusive) 1/=> to be consistent with => o ]^∑ _`abb∈� t =>D]. Constraints (13) and (14) are activated 21 

only when H/0> 1 1 to ensure that H/0>  indicates the correct time interval segment. Constraint (15) 22 
specifies H/0> as a binary variable. 23 k H/0>>∈� 1 1 ∀#, $ ∈ � (12) 

2kB/0..∈� { 2-/0(H/0> | 1) l 1=>D] ∀#, $ ∈ �,' ∈ � (13) 

2kB/0..∈� o 1=> l 2-/0(1 | H/0>) ∀#, $ ∈ �,' ∈ � (14) 

H/0> ∈ �0,1� ∀#, $ ∈ �,' ∈ � (15) 

Step 2: Linear model reformulation 24 

Since the waiting time component in step 1, ∑ G*+/0 ∑ H/0>=>>∈�*∈�,+∈�,/∈�,0∈� , is a bilinear term 25 
that remains challenging to solve, we further linearize this term. Here, we introduce continuous variables 26 I*+/0 ∈ CD	, !, ", #, $ ∈ �. Then, we revise the bilinear term to ∑ 45I*+/0*∈�,+∈�,/∈�,0∈�  as a linear term with 27 
the following constraints. Constraints (16) and (17) ensure that the value of I*+/0  is identical to 28 ∑ H/0>G*+/0=>>∈� . The reason is that when H/0> 1 0, Constraints (16) and (17) always hold for all 29 
feasible values of I*+/0 allowed by the demand and consequently are not activated; only when H/0> 1 1, 30 
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Constraint (16) yields G*+/0=> o I*+/0 , and Constraint (17) yields I*+/0 o G*+/0=> ; thus, I*+/0 11 G*+/0=>. Constraint (18) specifies each I*+/0 as a nonnegative continuous variable. 2 G*+/0=> | ,*+=>(1 | H/0>) o I*+/0 ∀!, ", #, $ ∈ �,' ∈ � (16) I*+/0 o G*+/0=> l ,*+=>(1 | H/0>) ∀!, ", #, $ ∈ �,' ∈ � (17) 

I*+/0 ∈ CD ∪ �0� ∀!, ", #, $ ∈ � (18) 

With these linearization steps, the investigated MTNS problem is reformulated as the following 3 
MILP model with objective (19), subject to vehicle capacity Constraint (2), pod conservation Constraint 4 
(3), passenger flow conservation Constraints (4)-(6), unique MV type Constraints (7)-(8), linearization 5 
Constraints (12)-(14) and (16)-(17), and variable domain Constraints (9)-(11), (15), and (18): 6 min_`ab,ghi`a,j`ab ,}`a~,�hi`a?@A7 ≔ k 4.B/0.)/0/∈�,0∈�,.∈�

l 45 � k I*+/0*∈�,+∈�,/∈�,0∈� 	l k G*+/0 )/0;*∈�,+∈�,/∈�,0∈� �
l k <G*+/0*∈�,+∈�,/e*∈�,0∈�  

(19) 

&. x. ��(&x��!(x&	(2) | (18)  

The above process successfully revises the original nonlinear model (NLM) to a linear model (LM), 7 
reduces the solution complexity and enables the model to be solved with a mixed linear integer 8 
programming solver. However, an approximation error ensues from the revision of the waiting time cost 9 
term in the LM. The following theoretical properties of the relationship between NLM and LM solutions 10 
are shown to quantify the approximation error. 11 

Theorem 1. The optimal objective value of the LM is a lower bound to that of the NLM. 12 

Proof. For the NLM, we denote the optimal solution to variables �B/0., G*+/0 , E/0.�  as 13 �B/0.∗ , G*+/0∗ , E/0.∗ � and the associated optimal objective value as ?���∗ , which is the value of Equation (1) 14 

after substituting �B/0.∗ , G*+/0∗ , E/0.∗ �.  15 

By substituting the dispatch solution �B/0.∗ , G*+/0∗ , E/0.∗ � into Constraints (12) and (18), we can solve 16 
the corresponding �H/0>, I*+/0�  values, which are denoted as �H/0>∗ , I*+/0∗ � . Obviously, 17 �B/0.∗ , G*+/0∗ , E/0.∗ , H/0>∗ , I*+/0∗ � is a feasible solution to the LM, and we denote the corresponding objective 18 

value, i.e., the value of Equation (19) after substituting �B/0.∗ , G*+/0∗ , E/0.∗ , H/0>∗ , I*+/0∗ �, as ?��.  19 
Then, we obtain 20 ?���∗ | ?�� 1 45 ∗ k G*+/0 12∑ B/0..∈� | k I*+/0*∈�,+∈�,/∈�,0∈� .*∈�,+∈�,/∈�,0∈�  21 

Since Constraints (16) and (18) ensure that the value of I*+/0 is identical to ∑ H/0>G*+/0=>>∈� , ?���∗ |22 ?� can be reformulated as follows: 23 

?���∗ | ?�� 1 45 ∗ k G*+/0 � 12∑ B/0..∈� | k H/0>=>>∈� � .*∈�,+∈�,/∈�,0∈�  24 
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Constraints (12)-(15) ensure that the value of 
]^∑ _`abb∈�  falls between => and =>D] for the ' value with 1 H/0> 1 1. It obviously indicates that 

]^∑ _`abb∈� ≥ ∑ H/0>=>>∈�  and consequentially ?���∗ ≥ ?��.  2 

By definition, the objective value ?�� corresponding to any feasible solution to the LM is not less 3 
than its optimal objective value, denoted as ?��∗ , which yields ?���∗ ≥ ?��∗ . This completes the proof.       4 

Theorem 2. Let �B/0.� , G*+/0� , E/0.� , H/0>� , I*+/0� �  denote the optimal solution to the LM. Then, 5 �B/0.� , G*+/0� , E/0.� � is a feasible solution to the NLM, and the corresponding objective value, i.e., the value 6 

of Equation (1) after substituting �B/0.� , G*+/0� , E/0.� �, which is denoted by ?���� , constitutes an upper 7 
bound to the optimal objective value of the NLM, ?���∗ .    8 

Proof. The linearization process successfully revises the original NLM to an LM by reformulating 9 
the nonlinear component to a linear term and adding a series of new linear Constraints (12)-(18). Since 10 
the LM and NLM share the same Constraints (2)-(11), the solution �B/0.� , G*+/0� , E/0.� �, which is optimal 11 
and feasible in the LM, is also feasible in the NLM. Then, ?����  is a feasible objective value of the 12 
NLM, so ?���� ≥ ?���∗ . Here, we complete the proof. 13 

With the above theoretical properties, by solving the optimal solution to the LM, we obtain a set of 14 
near-optimal solutions to the NLM (i.e., �B/0.� , G*+/0� , E/0.� � with objective value ?���� ) and a lower bound 15 
of the optimal objective value (i.e., ?��∗ ). The optimality gap of the near-optimal solution can be 16 
evaluated as (?���� | ?��∗ )/	?��∗ . The approximation error between NLM and LM is determined by the 17 

sizes of the intervals �z=>, =>D]]� that contain the corresponding � ]^∑ _`abb∈� � values. Thus, to reduce the 18 

approximation error, we may redistribute the �=>� values according to the obtained �B/0.� solutions as 19 
follows.  20 

a) Evenly divide z0, =@] into M intervals to solve the LM. This step produces the LM solution and 21 
system cost. Then, substitute the LM solution into Equation (1) to calculate the corresponding 22 
NLM objective value.  23 

b) Gather the values of �B/0.� in the LM solution into # clusters and redistribute the �=>� values 24 
with a higher density around each cluster.  25 

c) Solve the LM again with the new �=>� values.  26 
This process can be repeated until the approximation error is acceptable. While these three steps update 27 
the values of �=>�, they do not affect the validity of Theorems 1 and 2, since the theorems take �=>� as a 28 
set of input parameters that can be given any values. 29 

3.2 Alternative systems 30 

To compare with the proposed MTNS, this section describes two benchmark systems: the fixed-31 
capacity shuttle bus system (FSBS) and the passenger car system (PCS). We adapt the above MTNS 32 
model to specify the FSBS and PCS as flows based on the related characteristics. There are many 33 
different possible benchmark systems to compare with the proposed MTNS. However, it is not possible 34 
to enumerate each system in one study, since solving the optimal design for each system is very 35 
challenging. Here, we simply select two existing benchmark systems to reveal the benefits of the flexible 36 
capacity operations in the MTNS. More studies are required to fully understand its advantages over 37 
other systems. 38 

In the FSBS, each vehicle has a fixed capacity of (K  and provides direct point-to-point 39 
transportation without intermediate stops. Let 46787 denote the FSBS operation cost per distance. The 40 
FSBS model can be obtained by replacing B/0. with B/0K  (denoting the shuttle bus dispatch rate on link 41 
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#$) in objective function (20), vehicle capacity Constraint (21), pod conservation Constraint (22), and 1 
other Constraints (3)-(6), (9), and (12)-(18) as follows: 2 

min_`a� ,ghi`a,,j`ab ?6787 ≔ k 46787B/0K )/0/∈�,0∈� l k 45G*+/0 � 12B/0K l	)/0; �*∈�,+∈�,/∈�,0∈�l k <G*+/0*∈�,+∈�,/e*∈�,0∈�  
(20) 

&. x. ��(&x��!(x&	(3) | (6), (9), (12) | (18)  k G*+/0*∈�,+∈� o B/0K (6 ∀# ∈ �, $ ∈ � (21) 

k B/0K/∈�\�0� 1 k B0/K/∈�\�0�  ∀	$ ∈ � (22) 

B/0K ∈ CD ∪ �0� ∀# ∈ �, $ ∈ � (23) 

In the PCS, where private passenger cars and taxis dominate, each vehicle has a small average 3 
occupancy of (L. Let 49:7 denote the PCS operation cost per distance. The PCS considers an idealized 4 
situation where taxis and private vehicles directly transport passengers from their origins to their 5 
destinations without transfers, which eliminates the need for waiting at the origins or transfer points. 6 
Thus, the system cost includes only the operation cost and passenger riding time cost from the origin to 7 
the destination. With this approach, the PCS model can be obtained by replacing B/0. with B*+L  (denoting 8 
the passenger car flow rate on link !") in objective (24), pod conservation Constraint (25), passenger 9 
flow conservation Constraint (27), and variable domain Constraints (28)-(29) as follows: 10 

min_hi� ,ghi`a ,,j`ab	?9:7: 1 k 49:7B*+L)/0*∈�,+∈� l k 45G*+*+ )*+;*∈�,+∈�  (24) 

&. x.  G*+*+ o B*+L(9 ∀! ∈ �, " ∈ � (25) 

k B*+L*∈�\�+� 1 k B+*L+∈�\�*�  ∀" ∈ � (26) 

G*+*+ 1 ,*+ ∀! ∈ �, " ∈ � (27) B*+L ∈ CD ∪ �0� ∀! ∈ �, " ∈ � (28) G*+*+ ∈ CD ∪ �0� ∀! ∈ �, " ∈ � (29) 

4. Numerical example 11 

To illustrate the application of the proposed MTNS model, this section explores two numerical 12 
examples with different network sizes. All experiments were performed on an Intel® Core™ i7-8550U 13 
1.99 GHz CPU with 24 GB of RAM. The code was implemented in MATLAB 2019a and called a 14 
commercial MILP solver Gurobi (Cochran et al., 2011; Fuentes et al., 2019; Zhang et al., 2019) to solve 15 
the linearized model. The default parameter values are set as follows. 16 

Table 5 Default parameter settings 17 
Parameter Value Data source 

 � z1, 2, 3, 4, 5, 6] NEXT website (https://www.next-future-mobility.com) 
 ( 6	passengers NEXT website (https://www.next-future-mobility.com) 
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 (K 36	passengers Guangzhou No. 3 Bus Company (http://www.bus3.cn/sitecn/msg.aspx) 
 (L 1.5	passengers Freeway operation report of Guangdong Province, China 

(http://data.eastmoney.com/notices/detail/)  
 4.  [0.143, 0.257, 0.347, 0.417, 

0.471, 0.514] $/km 
Operation cost is not a linear function of the number of dispatched pods; 
NEXT website (https://www.next-future-mobility.com)  

 46687 0.514 $/km Guangzhou No. 3 Bus Company 
 49A7 0.143 $/km Guangzhou Taxi Company 
 45 2.86 $/h in Guangzhou Guangzhou Municipal Human Resources and Social Security Bureau 

reports in 2019 (http://gzrsj.hrssgz.gov.cn/english/) 
 <  0.142 $/passenger Passenger transfer cost are determined by referring to the average 

income per capita from Guangzhou Municipal Human Resources and 
Social Security Bureau reports in 2019. 

 ; 31.85 km/h Operating speed of MVs on city roads (case 1) 
(http://www.gzjt.gov.cn/gzjt/) 

 60.32 km/h Operating speed of MVs on the freeway (case 2) 
(http://www.0512s.com/lukuang/) 

4.1 Ten-station example 1 

Example 1 is a public transit system in Guangzhou Higher Education Mega Center, China. As shown 2 
in Figure 4 (a), we selected 10 critical bus stops and collected the real-world travel demand data for each 3 
stop to investigate this example. The bus stops in this system are sparse and scattered, and it is 4 
uneconomic to form a transit corridor because of the long deviation cost. The travel demand data and 5 
road distance data were obtained from the Communications Commission of Guangzhou Municipality. In 6 
addition to the default parameter values specified in Table 1, we set  1 20 and = 1[0.02: 0.01: 0.1, 7 
0.2: 0.1: 1, 500, 1000] after extensive experiments. The optimal solution (exact solution) of the proposed 8 
model is obtained within 0.12 h. The optimal MTNS service strategy is shown in Figure 4(b). Different 9 
colors represent different MV types, and the thickness of each arrow illustrates the frequency of the 10 
modular vehicle fleet on the corresponding link. 11 
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(a) MTNS service station information (b) Optimal routing result 

Figure 4 Numerical example from Guangzhou, China 13 

Cost comparisons 14 

We compared the MTNS solutions with those from the FSBS and PCS alternatives. The number of 15 
modular pods in the FSBS vehicles is set to the optimal value of � 1 6 (see Figure 5(e) for why this is 16 
optimal). In this experiment, we used the system cost (which includes the operation cost, waiting time 17 
cost, riding time cost, and transfer cost) as the criterion to evaluate the performance of different systems. 18 
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The results are shown in Table 6, where the percentage of cost reduction is calculated as 
6�����6���6��� ∗1 100% and 

6 ���6���6��� ∗ 100%.  2 

The total system cost in the MTNS is less than those in the FSBS and PCS. The MTNS reduces the 3 
system cost by 7.10% and 28.96% compared to the FSBS and PCS, respectively. The cost savings are 4 
more pronounced when we remove the fixed free-flow travel time independent of the optimal decisions. 5 
In other words, the revised system cost reduction becomes 31.39% and 128.03% compared to the FSB 6 
and PCS. The comparison between MTNS and FSBS shows that a flexible capacity transit system 7 
performs better than a fixed system. The benefits of the MNTS may not be as evident when we compare 8 
it with a transit network system where different lines operate with vehicles of different sizes (e.g., vans, 9 
minibuses). This comparison is not offered here, since it requires us to solve another optimal system 10 
design problem with the capacities of different lines as decision variables. This problem is non-trivial 11 
and out of the scope of this paper. Thus, the results here only offer an upper bound to the benefits of the 12 
proposed MNTS with existing transit operations. 13 

Regarding the system cost components, the reduction in operation cost (33.63%) is maximal when we 14 
compare the MTNS with the FSBS because the flexible vehicle capacity in the MTNS promotes frequent 15 
dispatching of small vehicles. In contrast, the FSBS can only dispatch vehicles with a stationary capacity 16 
and lead to a frequent rate. The improvements in riding costs are relatively minor, likely because the 17 
waiting time at the origin and transfer points is much less than the in-vehicle travel time overall, which 18 
is nearly 77% in this example. Although the in-vehicle travel time cost does not dramatically change, the 19 
bulk of the riding time cost is dominated by the travel distance and independent of the transportation 20 
system. If we remove the fixed free-flow travel time, we see a much more significant improvement in 21 
the variable riding time cost affected by the transportation system settings. For reference, Table 6 22 
provides the revised riding time cost, which is reduced by 1983.78%. Additionally, compared to the 23 
MTNS, the PCS has no waiting time and a shorter riding time because of the direct service without 24 
transfers. However, the PCS operation cost is higher than the MTNS operation cost by 290.86% due to 25 
the much lower vehicle occupancies in the PCS.  26 

Based on Theorems 1 and 2, we obtain a lower bound objective ?��∗ 1 1457.91 and an upper bound 27 
objective ?���� 1 1465.60. This result yields an optimality gap of 0.52%, which is on a lower order of 28 
magnitude than the cost component improvements in Table 6 and consequently acceptable.  29 

Table 6 Cost comparisons of different operating systems (case 1) 30 
  MTNS FSBS PCS 

 Value Value % reduction Value % reduction 
� System cost $1,457.91 $1,561.43 7.10% $1,880.17 28.96% 

Revised system cost*  $329.81 $433.33 31.39% $752.07 128.03% 
� Operation cost $192.41 $257.11 33.63% $752.07 290.86% 
� Waiting time cost $135.34 $144.23 6.57% - - 
� Riding time cost $1,128.47 $1,135.81 0.65% $1,128.10 -0.03% 

Revised riding time cost* $0.37  $7.71  1983.78% - - 
� Transfer cost $1.71 $24.29 1316.67% - - 

Note: The revised system cost and revised riding time cost are calculated by removing the fixed free-flow 31 
travel time (equal to the riding time cost in the PCS), which is independent of the optimal decisions. 32 

Sensitivity analysis 33 

This section analyzes the sensitivity of cost components to critical parameters in all three systems. 34 
Only one parameter is varied in each instance, and the other parameters remain at their default values. 35 
To evaluate the performance for different cases, we compared the overall system cost, operation cost, 36 
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riding time cost, waiting time cost, and transfer cost. To simplify the sensitivity analysis for �. and �5, 1 
we introduced two rates to adjust the values as �.� 1 ¢] ∗ �. and �5� 1 ¢^ ∗ �5. Rates ¢] and ¢^ are varied 2 
with ¢] l ¢^ 1 2,where	¢], ¢^ ∈ ℕD. The results are plotted in Figure 5. The findings of parameters 3 ¢], ¢^, �, and < are briefly summarized as follows. 4 

1. Figure 5(a) and (b) show that the proposed MTNS model effectively reduces the system cost. 5 
Compared to the FSBS, the MTNS always performs better (e.g., with a lower system costs) at 6 
all ¢] and ¢^ values. Figure 5(c) plots the operation cost with varying ¢]	and	¢^ values. The 7 
operation cost of the MTNS increases when the trip time cost dominates (¢] o 0.4, ¢^ ≥ 1.6). 8 
Compared to the PCS, the system cost of the MTNS is lower when the operation cost rate is 9 
relatively high over the trip time cost range (¢] ≥ 0.4, ¢^ o 1.6). However, when the time cost 10 
dominates (¢] o 0.4, ¢^ ≥ 1.6), the PCS may work better than the MTNS due to its time 11 
savings from direct service.  12 

2. Figure 5(d) plots the transfer cost with varying ¢]	and	¢^ values. The transfer cost in the FSBS 13 
significantly increases with the increase in operation cost, while that of the MTNS does not 14 
vary much with changes in ¢]	and	¢^. 15 

3. The system cost decreases when the number of MV types (or �) increases, as shown in Figure 16 
5(e). This result is evident because more MV types provide more flexible vehicle capacities. 17 
The system cost in the FSBS is a U-shaped curve with an optimal value of � 1 6 (i.e., (6 1 36), 18 
which is the default parameter value that we selected in the numerical example.  19 

4. Figure 5(f) shows the sensitivity of the system cost to transfer cost <. The system cost increases 20 
when the transfer cost rate per passenger increases. However, the transfer cost shares a small 21 
percentage of the system cost in the MTNS, and the magnitude of the increase in system cost is 22 
not substantial. The transfer cost per passenger increases by 900% (i.e., from 0.07 to 0.71), 23 
while the total system cost only increases by 0.3% (i.e., from $1456 to $1461). 24 

  
(a) System cost performance with ¦W , ¦X (b) Cost performance with ¦W, ¦X 
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(c) Operation cost performance with ¦W	§¨©	¦X (d) Transfer cost performance with ¦W	§¨©	¦X 

  
(e) System cost performance with MV type ª for the 

MTNS and «¬ for the FSBS, «¬ 1  ∗ ® 

(f) System cost performance with transfer cost ¯ 

Figure 5 Sensitivity analysis of the criterion with different input parameters 1 

The above obtained optimal solutions to the LM may not be the exact optima to the original NLM. 2 
To investigate the approximation errors, we employ Theorems 1 and 2 to quantify the corresponding 3 
approximation gaps for a set of selected instances with different parameter settings, as shown in Table 7. 4 
The approximation gaps are less than 4% for all instances with an average of 1.66%, which is acceptable 5 
for engineering practice. If we further refine the linearization approximation intervals, we expect the 6 
gaps to continue to decrease (although more computational resources are required).    7 

Table 7 Sensitivity analysis of the approximation gap with various parameter combinations 8 
Instance 

number 
¦W ¦X  ¯ ?��∗  ?����  

Approximation 

gap 

1 0 2 6 0.142 $2,464.89  $2,520.91  2.22% 
2 0.5 1.5 6 0.142 $2,000.41  $2,054.86  2.65% 
3 1 1 6 0.142 $1,457.91  $1,465.60  0.52% 
4 1.5 0.5 6 0.142 $928.03  $957.41  3.07% 
5 2 0 6 0.142 $364.40  $379.30  3.93% 
6 1 1 2 0.142 $1,472.78  $1,483.56  0.73% 
7 1 1 4 0.142 $1,459.00  $1,480.25  1.44% 
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8 1 1 8 0.142 $1,451.39  $1,464.36  0.89% 
9 1 1 10 0.142 $1,449.00  $1,462.30  0.91% 
10 1 1 6 0.071 $1,456.38  $1,475.15  1.27% 
11 1 1 6 0.213 $1,459.17  $1,475.63  1.12% 
12 1 1 6 0.284 $1,459.38  $1,475.74  1.11% 

Average       1.66% 

4.2 Nineteen-station example 1 

To examine the model performance over different network topologies, we present another example 2 
with more stations (19 stations) and a larger network (the Guangdong Province freeway network). At 3 
this province-level spatial scale, the operations involve a new shared-mobility freeway system where 4 
travelers travel from one freeway station to another freeway station with shared MVs instead of driving 5 
their cars. For example, each traveler selects a urban transportation service (e.g., bus, metro, BRT, taxi, 6 
shared bike, or MV) from their origin (e.g., home or office) to the nearest shared MTNS freeway service 7 
station. Then, an MV transports the passenger to the MTNS freeway service station that is nearest to the 8 
passenger destination. Finally, from this service station, the passenger transfers to another urban 9 
transportation service to reach their destination. This study assumes that local transportation decisions 10 
are exogenous to MTNS decisions; thus, the local transportation costs are not considered. The 11 
advantages of this proposed new system are associated with pooling riders in MVs with high occupancy 12 
(as opposed to the low occupancy in the PCS) and flexible capacity (as opposed to the fixed capacity in 13 
the FSBS). 14 

The input data include 295876 records of vehicles passing through 19 key toll stations in 15 
Guangdong, China (see Figure 6(a)), from 10:00-11:00 in May 2019. With an estimated average 16 
occupancy of 1.5 passengers per vehicle (Chow et al., 2010; Johnston and Ceerla, 1996; Siuhi and 17 
Mussa, 2007), we obtain the passenger OD demands as shown in Figure 6(b). We assume that 3% of the 18 
passengers use the MTNS service by default; we set  1 20, and = 1[0.1: 0.025: 0.45, 0.5, 1, 500, 19 
1000]. 20 

   21 
(a) 19 key toll stations in Guangdong Province, China (b) OD demand data  

Figure 6 Toll station information and OD demand data in Guangdong Province, China 22 

In this case, the optimal results of the three systems are shown in Table 8. Compared to the FSBS, 23 
the MTNS performs well in reducing the system cost (by 4.62%). Again, this result is further improved 24 
(to 15.98%) when we omit the free-flow travel time cost, which is a constant component in this system. 25 
If we decompose the total system cost into different components, we see significant improvements in the 26 
critical cost components. Specifically, the operation cost and waiting time cost are reduced by 2.29% 27 
and 9.76%, respectively. This reduction indicates the advantages of the proposed MTNS over the 28 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

1 0 7355 4418 886 1487 1754 1406 2541 864 245 137 68 79 674 86 61 103 19 352

2 6825 0 855 1821 2190 395 208 181 2597 534 162 61 84 403 14 11 14 5 35

3 4490 933 0 270 632 6277 1930 258 171 100 41 36 31 209 59 25 35 11 244

4 576 1808 197 0 1409 117 40 37 117 108 204 53 61 634 4 1 3 2 3

5 1392 1786 571 1423 0 313 89 13 65 83 75 28 39 1261 6 7 11 4 20

6 1850 437 6839 141 442 0 3317 82 85 52 19 33 13 199 191 46 87 14 284

7 1265 145 1595 42 66 2643 0 51 44 26 4 5 6 33 234 25 76 24 484

8 2047 159 241 18 10 71 53 0 107 14 7 2 2 14 3 1 0 2 10

9 674 2192 148 97 51 42 42 88 0 223 13 3 3 39 4 3 5 3 14

10 213 470 125 103 73 40 15 13 269 0 130 10 16 35 2 1 2 6 6

11 105 142 42 244 66 33 7 9 5 133 0 154 86 41 0 0 0 1 0

12 71 112 50 80 39 25 12 2 6 38 190 0 421 14 0 0 1 1 4

13 117 135 43 138 54 35 9 4 6 20 121 410 0 32 0 1 2 0 1

14 471 260 199 644 1169 176 35 10 52 31 61 21 17 0 11 1 5 2 8

15 107 4 50 3 8 222 253 5 3 2 1 1 7 4 0 36 149 20 6

16 60 11 26 1 5 59 42 3 4 2 0 1 0 6 49 0 1094 739 19

17 114 13 48 1 9 93 76 4 5 2 1 1 3 9 137 892 0 303 38

18 30 8 13 3 1 16 18 0 3 0 0 0 0 1 14 595 260 0 8

19 338 38 185 9 15 216 448 18 18 13 1 1 2 4 2 3 20 9 0
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traditional FSBS. While the riding time cost does not dramatically change, it is dominated by the travel 1 
distance (range of approximately 100-800 km in this case) and consequently not much affected by the 2 
transportation system. If we remove the free-flow travel time cost, we see a much more significant 3 
improvement in the variable riding time cost (by 111.67%). The passenger transfer cost is also optimized 4 
in the MTNS. Compared to the PCS, the MTNS yields dramatic savings in operation cost and system 5 
cost, but the time costs slightly increase due to the added waiting and transfers. Finally, the MTNS 6 
model produces a lower bound ?��∗ 1 23,082.86 and an upper bound ?���� 1 23,351.55, which yield 7 
an optimality gap of 1.15% with a computational time of 0.3 h. 8 

Table 8 Cost comparison of different operation systems (case 2) 9 
  MTNS FSBS PCS 

 Value Value % reduction Value % reduction 
� System cost $23,082.86  $24,148.43  4.62% $49,026.99  112.40% 

Revised system cost*  $6,667.71  $7,733.29  15.98% $32,611.84  389.10% 
� Operation cost $6,042.37  $6,632.29  9.76% $32,611.84  439.72% 
� Waiting time cost $263.56  $269.59  2.29% - - 
� Riding time cost $16,748.82  $17,121.43  2.22% $16,415.14  -1.99% 

Revised riding time cost* $333.68  $706.29  111.67% - - 
� Transfer cost $28.10  $125.13  345.27% - - 

Note: The revised system cost and revised riding time cost are calculated by removing the fixed free-flow 10 
travel time (equal to the riding time cost of the PCS), which is independent of the optimal decisions. 11 

5. Conclusion 12 

Using the emerging MV technology, this paper proposes an approach to determine the optimal 13 
MTNS design (i.e., the allocation and scheduling of MV fleets over a general transportation network) to 14 
minimize the operation cost and passenger trip time cost. We formulate this problem into an MINLP 15 
model that captures detailed traveler waiting time costs with nonlinear vehicle scheduling functions. To 16 
facilitate the solution approach, we mathematically revise the MINLP model to produce a 17 
computationally tractable mixed-integer linear programming (MILP) model. This linear model solves 18 
both lower and upper bounds to the original nonlinear model and consequently yields a near-optimal 19 
solution with an optimality gap. This revised MILP model can be solved by using off-the-shelf 20 
commercial solvers (e.g., Gurobi) to obtain the exact solution. We explore two numerical examples to 21 
illustrate the applications of this model and compare it with alternative systems (i.e., the FSBS and 22 
PCS). The MTNS is more effective than the alternatives in suburban setting (reducing the system cost, 23 
operation cost, and waiting time cost by 7.10%, 33.63%, and 6.57%, respectively, compared to the FSBS 24 
and the operation cost and system cost by 290.86% and 28.96%, respectively, compared to the PCS) and 25 
freeway settings (reducing the system cost and operation cost by 4.62% and 9.76% compared to the 26 
FSBS and by 439.72% and 112.40% compared to the PCS, respectively). To further explore the 27 
robustness of the proposed model with different input parameters, a sensitivity analysis shows the effects 28 
of the crucial parameter values and approximation gaps on the MTNS performance. 29 

Since the MV transit network system design is a novel research topic, the proposed model provides a 30 
foundation that may be extended in several directions. The proposed model is formulated as a mixed-31 
integer linear programming problem and solved with a commercial solver (i.e., Gurobi) in this study. 32 
Future work may focus on designing customized algorithms to further improve the solution efficiency. 33 
Additional research is required to explore the dynamic and stochastic demands, en route link transfers, 34 
and associated vehicle coordination when operating a mixed fleet on the link. The proposed model can 35 
be extended to consider the intercedence among system design decisions, traffic congestion patterns, and 36 
heterogeneous passenger behaviors (e.g., preferences regarding time windows, service level, willingness 37 
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to pay, and MV type). Moreover, it will be interesting to examine the effect of the combinations of 1 
autonomous and electric MVs in future transportation modes. 2 
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