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Abstract
This paper presents a widely applicable approach to solving (multi-marginal, mar-
tingale) optimal transport and related problems via neural networks. The core idea
is to penalize the optimization problem in its dual formulation and reduce it to a
finite dimensional one which corresponds to optimizing a neural network with smooth
objective function.We present numerical examples from optimal transport, martingale
optimal transport, portfolio optimization under uncertainty and generative adversarial
networks that showcase the generality and effectiveness of the approach.

Keywords Optimal transport · Robust hedging · Numerical method · Duality ·
Regularisation · Feedforward networks · Knightian uncertainty · Distributional
robustness

1 Introduction

In this paper we present a penalization method which allows to compute a wide class
of optimization problems of the form

φ( f ) = sup
ν∈Q

∫
f dν

by means of neural networks. The most widely known representative of such a func-
tional occurs in the optimal transport problem, to be introduced shortly.More generally,
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these functionals appear for instance in the representation of coherent risk measures
[4] as the worst-case expected loss over a class Q of scenario probabilities, in the
representation of nonlinear expectations [40], or as the upper bound of arbitrage-free
prices for a contingent claim f , see e.g. [24]. To solve the initial problem φ( f ) we
will make use of its dual formulation and restrict to the subclass of those optimization
problems which can be realized as a minimal superhedging price

φ( f ) = inf
h∈H:
h≥ f

∫
h dμ0.

for some μ0 ∈ Q, whereH is a set of continuous and bounded functions h : X → R,
where the relation ofH andQ is given at the beginning of Sect. 2. A very similar class
of optimization problems in an abstract framework of Banach lattices is studied in [20].
Under sufficient regularity conditions the values of the primal problem supν∈Q

∫
f dν

and its dual problem infh∈H: h≥ f
∫
h dμ0 can be shown to coincide, see e.g. [16] for

related pricing-hedging dualities.
A typical example is the Kantorovich relaxation [35] of Monge’s optimal transport

problem, whereQ is the set of probability measures on a product space X = X1 ×X2
with given marginalsμ1 andμ2, and whereH is the set of all continuous and bounded
functions h(x1, x2) = h1(x1) + h2(x2) and

∫
h dμ0 = ∫

X1
h1 dμ1 + ∫

X2
h2 dμ2.

Further frequently studied problems in this class includemulti-marginal optimal trans-
port and Wasserstein distances (see e.g. [5,49,50]), martingale optimal transport (see
e.g. [7,25,30,32]), value at risk under dependence uncertainty (see e.g. [11,21,43]),
or calculating worst case copula values and improved Fréchet–Hoeffding bounds (see
e.g. [6,39]). Moreover, φ( f ) serves as a building block for several other problems,
like generative adversarial networks (where additionally, the optimization includes
generating a distribution, see e.g. [3,22,29]), portfolio choice under dependence uncer-
tainty (where additionally, portfolio weights are optimized, see e.g. [10,42]), or robust
optimized certainty equivalents (see e.g. [19]). In these cases, the solution approach
presented in this paper is still applicable.

Summaryof theapproachThegoal is to solveφ( f )numerically. The implementation
will build on the dual representation of φ( f ). The first step is to go over to a finite
dimensional setting, where the set H is replaced by a subset Hm :

φm( f ) = inf
h∈Hm :
h≥ f

∫
h dμ0

Theoretically, we will look at a sequence (Hm)m∈N with H1 ⊆ H2 ⊆ · · · ⊆ H such
thatH∞ := ∪m∈NHm is in a certain sense dense inH. More concretely,Hm can be a
set of neural networks with a fixed structure (but unspecified parameter values), and
m measures the number of neurons per layer.

To allow for a step-wise updating of the parameters (e.g. by gradient descent meth-
ods) for the space Hm , the inequality constraint h ≥ f is penalized. To this end,
we introduce a reference probability measure θ on the state space X . Intuitively, this

123



Applied Mathematics & Optimization (2021) 83:639–667 641

Fig. 1 Occurring problems and their relations. The depicted convergences are studied in Sect. 2 and, in a
more specific context of neural networks, in Sect. 3

measure will be used to sample points at which the inequality constraint h ≥ f can
be tested. Further, we introduce a differentiable and nondecreasing penalty function
β : R → R+. This leads to the penalized problem

φm
θ,β( f ) = inf

h∈Hm

{ ∫
h dμ0 +

∫
β( f − h) dθ

}
.

For theoretical considerations we also introduce

φθ,β( f ) = inf
h∈H

{ ∫
h dμ0 +

∫
β( f − h) dθ

}
.

We will again consider sequences of penalty functions (βγ )γ>0 parametrized by a
penalty factor γ , and use the notation φθ,γ ( f ) := φθ,βγ ( f ) and φm

θ,γ ( f ) := φm
θ,βγ

( f ).
Here, an increasing penalty factor can be seen as a more and more precise enforcing
of the inequality constraint h ≥ f .

The problems φm
θ,γ ( f ) are the ones which are solved numerically. Chapters 2 and

3 study the relation between this problem which is eventually implemented, and the
initial problem φ( f ). To this end, we analyse how the introduced approximative prob-
lems behave for m → ∞ and γ → ∞. Figure 1 summarizes the occurring problems
and their relations. Notably, we are only interested in convergence of optimal values,
not that of optimizers.

The final step is to find a numerical solution of φm
θ,γ ( f ), which means in practice

finding the optimal parameters of the network Hm . We use Tensorflow [1] and the
Adam optimizer [37] to this end, and thus mostly regard this step as a black box. We
will denote the numerical optimal solution by φ̂m

θ,γ ( f ).

Implementation method: Related literature Penalization of optimal transport prob-
lems has been studied in several works (see e.g. [9,14,17,18,26,29,44,45,47]). Entropic
penalization in particular is applied often, which is in close relation to the Schrödinger
problem [38]. Cominetti and San Martín’s work [17] from 1994 on entropic penaliza-
tion of arbitrary linear programs can be applied to purely discrete optimal transport.
The basic idea in [17] is to obtain a strictly convex problem through penalization
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which can be solved quicker and converges to the initial problem, for an increasing
penalty factor. More recently, Cuturi [18] gives an efficient algorithm to compute dis-
crete optimal transport problems with two marginals based on entropic penalization
and Sinkhorn’s matrix scaling algorithm. Genevay et al. [26] and Solomon et al. [47]
go further in this direction and give algorithms to compute arbitrary optimal trans-
port problems with two marginals, where the algorithm (for the case of continuous
marginals) is based on a reproducing kernel Hilbert space approach, and discretiza-
tion, respectively. In [26] the authors alreadymention thatmore general regularizations
beyond the entropic one are possible. Among others Benamou et al. [9] and Schmitzer
[44] use scaling algorithms related to [18] for a larger class of problems, including
for example (discrete) multi-marginal, constrained and unbalanced optimal transport.
Carlier et al. [14] show �-convergence of the entropic penalized Wasserstein-2 dis-
tance to the unpenalized one. The same kind of �-convergence is also subject of the
studies related to the Schrödinger problem [38], even for more general cost functions.
Recent research by Arjovsky et al. [3,29] inspired by generative adversarial networks
include solving a particular optimal transport problem (the Wasserstein-1 distance)
based on L2 penalization. In these works, the numerical approach to solve optimal
transport problems by parametrization of the dual variables by neural networks orig-
inated. Seguy et al. [45] apply a neural network based approach to arbitrary optimal
transport problems with two marginals. Their theoretical results are broadly based
on entropic penalization, discretization, and weakly continuous dependence of the
optimal transport problem on the marginals.

Contribution The current paper gives a unifying numerical solution approach to
problems of the form φ( f ) based on penalization and neural networks. The focus
lies both on general applicability with respect to the choice of problem, and also on a
flexible framework regarding the solution method.

Compared to the existing literature, which often focusses on a single representative
(often the optimal transport problem) among problems of the form φ( f ), our theoret-
ical results are widely applicable. Similarly, the penalization method and the resulting
dual relations in this paper allow for many different forms of reference measure θ

and penalty function βγ , while the existing literature is often restricted to uniform or
product reference measures, and exponential penalty function.1 We show the effects
of different reference measures and different penalty functions both theoretically in
Theorem 2.2 and practically in the numerical examples in Sect. 4. In some examples
the choice of an appropriate reference measure is crucial, see e.g. Sect. 4.4. Equation
(2.6) of Theorem 2.2 also motivates an updating procedure for the reference measure
to reduce the error arising from penalization, which is applied in Sect. 4.5.

The presented approach is showcased with several examples, which are mostly toy
problems taken from existing papers. The reason we use toy problems is to allow for
an evaluation of the numerical methods that can be based on analytical solutions.

1 In discrete settings, the reference measure is usually the uniform distribution (see e.g. [18], where the
penalization does not explicitly include a reference measure. The penalization applied is simply the entropy
of a measure, which corresponds to the relative entropy with uniform reference measure). In non-discrete
settings, usually the product measure of the marginals specified by the optimal transport problems are used
(see e.g. [26,45]).
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Structure of the paper In Sect. 2 we present the theoretical results on approximation
and regularization. Section 3 discusses the particular case of Hm as built by multi-
layer feedforward networks. In Sect. 4 we illustrate the proposed method with several
examples. All proofs are postponed to Sect. 5.

2 Regularization and Approximation of Hedging Functionals

LetP(X ) be the set of all Borel probability measures on a Polish spaceX , and denote
by Cb(X ) the linear space of all continuous bounded functions f : X → R. We
consider the superhedging functional

φ( f ) := inf
{ ∫

h dμ0 : h ≥ f for some h ∈ H
}

(2.1)

for f ∈ Cb(X ), where μ0 ∈ P(X ) is a pricing measure andH ⊆ Cb(X ). Throughout
this section we assume that H is a linear space which contains the constants (i.e. the
constant functions).

In order to derive a dual representation, we assume that φ is continuous from above,
i.e. φ( fn) ↓ 0 for every sequence ( fn) in Cb(X ) such that f n ↓ 0. By the nonlinear
Daniell-Stone theorem it has a representation

φ( f ) = max
μ∈Q

∫
f dμ (2.2)

for all f ∈ Cb(X ), and the nonempty set Q = {
μ ∈ P(X ) : ∫

h dμ =∫
h dμ0 for all h ∈ H}. In particular μ0 ∈ Q. The problems (2.2) and (2.1) are

in duality and we refer to (2.2) as the primal and (2.1) as the dual formulation. For
the details we refer to the Appendix A. There it is outlined how the duality extends to
unbounded functions. However, for the sake of readability we focus on Cb(X ).

The following example illustrates the basic setting:

Example 2.1 Let X = R
d , and denote by �(μ1, . . . , μd) the set of all μ ∈ P(Rd)

with first marginal μ1, second marginal μ2, etc. In the following examples, under
the assumption that Q 	= ∅ it is straightforward to verify that the corresponding
superhedging functional is continuous from above.

(a) (Multi-marginal) optimal transport [35,50]:

Q = �(μ1, . . . , μd),

H =
{
h ∈ Cb(R

d) : h(x1, . . . , xd) = h1(x1) + · · · + hd(xd) for all (x1, . . . , xd)

∈ R
dand some hi ∈ Cb(R)

}
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(b) Martingale optimal transport [7,25]:

Q = {μ ∈ �(μ1, . . . , μd) : the canonical process on Rd is a μ-martingale}

H =
{
h ∈ Cκ(Rd) : h(x1, . . . , xd) =

d∑
i=1

hi (xi )

+
d∑

i=2

gi (x1, . . . , xi−1) · (xi − xi−1) for all (x1, . . . , xd)

∈ R
d and some hi ∈ Cb(R) and gi ∈ Cb(R

i−1)

}

where Cκ(Rd) denotes the space of all continuous functions of linear growth
corresponding to κ(x) := 1 + |x |, see Appendix A. By Strassen’s theorem [48]
the set Q is nonempty if the marginals μ1, . . . , μd are in convex order.

(c) Optimal transport with additional constraints:

Q = {μ ∈ �(μ1, . . . , μd) :
∫

g j dμ = c j for all j = 1, . . . , N }

H = {h ∈ Cb(R
d) : h(x1, . . . , xd) =

d∑
i=1

hi (xi ) +
N∑
j=1

λ j
(
g j (x1, . . . , xd) − c j

)

for some hi ∈ Cb(R), λ j ∈ R}

for some g1, . . . , gN ∈ Cb(R
d) and c1, . . . , cN ∈ R. For related problems we

refer to [6] and the references therein.

2.1 Regularization of the Superhedging Functional by Penalization

Our goal is to regularize the superhedging functional φ by considering the convolution

φθ,γ ( f ) := inf
h∈Cb(X )

{
φ(h) + ψθ,γ ( f − h)

}

= inf
h∈H

{ ∫
h dμ0 +

∫
βγ ( f − h) dθ

}
(2.3)

where ψθ,γ ( f ) := ∫
βγ ( f ) dθ for a sampling measure θ ∈ P(X ), and βγ (x) :=

1
γ
β(γ x) is apenalty functionwhich is parametrized byγ > 0.Weassume thatβ : R →

R+ is a differentiable nondecreasing convex function such that limx→∞ β(x)/x = ∞.
Its convex conjugate

β∗
γ (y) := sup

x∈R
{xy − βγ (x)} for all y ∈ R+,

satisfies β∗
γ (y) = β∗(y)/γ . Common examples are
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(a) the exponential penalty function β(x) = exp(x − 1) with conjugate β∗(y) =
y log(y),

(b) the L p penalty function β(x) = 1
p (max{0, x})p with conjugate β∗(y) = 1

q y
q

where q = p
p−1 for some p > 1.

In case that H = R the functional (2.3) is a so-called optimized certainty equivalent,
see Ben-Tal and Teboulle [8]. In the following result we show the dual representation
of the regularized superhedging functional φθ,γ and its convergence to φ.

Theorem 2.2 Let f ∈ Cb(X ). Suppose there exists π ∈ Q such that π � θ and∫
β∗( dπ

dθ

)
dθ < ∞. Then

φθ,γ ( f ) = max
μ∈Q

{ ∫
f dμ − 1

γ

∫
β∗(dμ

dθ

)
dθ
}
. (2.4)

Moreover,

φθ,γ ( f ) − β(0)

γ
≤ φ( f ) ≤ φθ,γ ( f ) + 1

γ

∫
β∗(dμε

dθ

)
dθ + ε (2.5)

wheneverμε ∈ Q is an ε-optimizer of (2.2) such thatμε � θ and
∫

β∗
γ

( dμε

dθ

)
dθ < ∞.

If ĥ ∈ H is a minimizer of (2.3) then μ̂ ∈ P(X ) defined by

dμ̂

dθ
:= β ′

γ ( f − ĥ) (2.6)

is a maximizer of (2.4).

2.2 Approximation of the Superhedging Functional

In this subsection we consider a sequence H1 ⊆ H2 ⊆ · · · of subsets of H, and set
H∞ := ⋃

m∈NHm . For eachm ∈ N∪{+∞}, we define the approximated superhedg-
ing functional by

φm( f ) := inf
{ ∫

h dμ0 : h ≥ f for some h ∈ Hm
}
. (2.7)

For the approximation of φ( f ) by φm( f ), we need the following density condition
onH∞.

Condition (D) For every ε > 0 and μ ∈ P(X ) holds

(a) for every h ∈ H there exists h′ ∈ H∞ such that
∫ |h − h′| dμ ≤ ε,

(b) there exists h′′ ∈ H∞ such that 1Kc ≤ h′′ and
∫
h′′ dμ ≤ ε for some compact

subset K of X .

In Sect. 3 we will discuss Condition (D) in the context of multilayer feedforward
networks. The condition allows for the following approximation result.
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Proposition 2.3 Assume thatH∞ is a linear spacewhich contains the constants.Under
Condition (D) one has

lim
m→∞ φm( f ) = φ∞( f ) = φ( f )

for all f ∈ Cb(X ).

Given a sampling measure θ and a parametrized penalty function βγ as in the previ-
ous subsection, we define the approximated version of the regularized superhedging
functional by

φm
θ,γ ( f ) = inf

h∈Hm

{ ∫
h dμ0 +

∫
βγ ( f − h) dθ

}
(2.8)

for all f ∈ Cb(X ). As a consequence of the two approximative stepsφθ,γ ( f ) → φ( f )
for γ → ∞ in Theorem 2.2 and φm( f ) → φ( f ) for m → ∞ in Proposition 2.3 we
get the following convergence result.

Proposition 2.4 Suppose that H∞ satisfies Condition (D) and for every ε > 0 there
exists an ε-optimizer με of (2.4) such that με � θ and

∫
β∗( dμε

dθ

)
dθ < +∞. Then,

for every f ∈ Cb(X ) one has φm
θ,γ ( f ) → φ( f ) for min{m, γ } → ∞.

The existence of such ε-optimizers as required in Theorem 2.2 and Proposition 2.4
is for example established in [12] in the context of multi-marginal optimal transport
problems in R

d with absolutely continuous marginals. In general, the existence of
such ε-optimizers crucially depends on the choice of θ , see also Example 3.6 for a
simple illustration.

3 Modelling Finite Dimensional Subspaces with Multilayer
Feedforward Networks

This section explains the specific choice of approximative subspaces as built by neural
networks. Generally, a feasible alternative to neural networks is to build these spaces
via basis functions, like polynomials, which is for example pursued in [32] in the con-
text of martingale optimal transport. In contrast to a basis approach, where functions
are represented as a weighted sum over fixed basis functions, neural networks rely on
the composition of layers of simple functions. This has shown to be an efficient way
to approximate a large class of functions with relatively few parameters. Before going
into the results, we give the required notation for neural networks.

3.1 Notation

The type of neural networks we consider are fully connected feed-forward neural
networks. Those are mappings of the form

R
d � x �→ Al ◦ ϕ ◦ Al−1︸ ︷︷ ︸

(l−1). layer

◦ · · · ◦ ϕ ◦ A0︸ ︷︷ ︸
1. layer

(x)
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where Ai are affine transformations and ϕ : R → R is a nonlinear activation
function that is applied elementwise, i.e. ϕ((x1, . . . , xn)) = (ϕ(x1), . . . , ϕ(xn)) for
(x1, . . . , xn) ∈ R

n .
Regarding dimensions, there is an input dimension d ∈ N and a hidden dimension

m ∈ N. This means A0 maps from R
d to Rm , A1, . . . , Al−1 map from R

m to Rm , and
Al maps from R

m to R. Each affine transformation A j can trivially be represented as
A j (x) = Mj x + b j for a matrix Mj and a vector b j . All these matrices and vectors
together are the parameters of the network, which can be regarded as an element of
R

D for some D ∈ N.
We will require the sets which contain all feed-forward neural networks with fixed

structure (i.e. fixed number of layers and fixed dimensions) but unspecified parameter
values. We denote by � ⊂ R

D the sets of possible parameters for a fixed net-
work structure (where formally, D depends on the structure of the network), and
by Nl,d,m(ξ) = Al ◦ ϕ ◦ Al−1 ◦ · · · ◦ ϕ ◦ A0 a particular neural network with l layers,
input dimension d, hidden dimension m and parameters ξ ∈ �. We denote the set of
all such networks Nl,d,m(ξ) for ξ ∈ � by Nl,d,m(�).

In the remainder of this section, we work with a fixed number of layers and input
dimension, but allow for growing hidden dimension. For different hidden dimensions
m, denote by �m the corresponding parameter sets. We define

Nl,d :=
⋃
m∈N

Nl,d,m(�m).

We want this definition to be independent of the precise choices of the parameter sets,
which is why we make the standing assumption that the setsNl,d,m(�m) are growing
in m. One way to make this explicit is:

Assumption 3.1 For any l, d ∈ N and a sequence of parameter sets�1, �2, . . ., where
�m is regarded as a subset of RDm for some Dm ∈ N, we will always assume that
[−m,m]Dm ⊆ �m and Nl,d,m(�m) ⊂ Nl,d,m+1(�m+1) for all m ∈ N.

The only reason why we do not just set �m ≡ R
Dm is that in Proposition 3.7 we make

the assumption of compact parameter sets. Further, we assume

Assumption 3.2 The activation function ϕ is continuous, nondecreasing and satisfies
the limit properties limx→−∞ ϕ(x) = 0 and limx→+∞ ϕ(x) = 1.

3.2 ModellingHm Via Neural Networks

In the following we assume that H is of the form

H =
{ J∑

j=1

e j h j ◦ π j + a : h j ∈ Cb(R
d j ), a ∈ R

}
,

where e j ∈ Cb(X ) and π j : X → R
d j are continuous functions for all j = 1, . . . , J .

This form of H includes many different problems, for instance the ones considered
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in Example 2.1 (e.g. in (a) one has H = {∑d
j=1 h j ◦ prk : h j ∈ Cb(R)} where

pr j (x) := x j denotes the projection on the j-th marginal component).
We approximate H by

H∞ =
⎧⎨
⎩

J∑
j=1

e j h j ◦ π j + a : h j ∈ Nl j ,d j , a ∈ R

⎫⎬
⎭ ,

and its subspaces

Hm =
⎧⎨
⎩

J∑
j=1

e j h j ◦ π j + a : h j ∈ Nl j ,d j ,m(� j,m), a ∈ R

⎫⎬
⎭ .

In this context the problems φm
θ,γ ( f ) are given by

φm
θ,γ ( f ) = inf

h∈Hm

{∫
h dμ0 +

∫
βγ ( f − h) dθ

}

= inf
a∈R inf

h j∈Nl j ,d j ,m (� j,m )

⎧⎨
⎩
∫ J∑

j=1

e j h j ◦ π j dμ0 + a

+
∫

βγ

(
f −

J∑
j=1

e j h j ◦ π j − a
)
dθ

⎫⎬
⎭

= inf
a∈R inf

ξ j∈� j,m

⎧⎨
⎩
∫ J∑

j=1

e j Nl j ,d j ,m(ξ j ) ◦ π j dμ0 + a

+
∫

βγ

(
f −

J∑
j=1

e j Nl j ,d j ,m(ξ j ) ◦ π j − a
)
dθ

⎫⎬
⎭

for all f ∈ Cb(X ). The final formulation illustrates that the problem φm
θ,γ ( f ) is now

reduced to a finite dimensional problem of finding the optimal parameters in a neural
network. Further, the overall objective depends smoothly on the parameters, and the
parameters are unconstrained. In short, problem φm

θ,γ ( f ) fits into the framework of
machine learning problems that can be numerically solved by standard stochastic
gradient descent based methods.

Under the standing Assumptions 3.1 and 3.2, the following lemma establishes
situations when Condition (D), which is required for Proposition 2.3, is satisfied in
the neural network setting.

Lemma 3.3 (a) H∞ satisfies the first part of Condition (D).
(b) If X = R

d = R
d1 × · · · × R

dJ0 and π j = pr j , e j = 1 for j = 1, . . . , J0 ≤ J ,

where pr j is the projection from R
d to j-th marginal component Rd j , then H∞
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satisfies the second part of Condition (D). Further, the second part of Condition
(D) is trivially satisfied whenever X is compact.

Notably, part (b) can be seen as a large, but still exemplary case. Intuitively, the
second part of Condition (D) is satisfied whenever the space H∞ is rich enough.

Remark 3.4 Later in the numerics we will usually work with a ReLU activation func-
tion, i.e. ϕ(x) = max{0, x}. While this does not satisfy the latter limit property of
Assumption 3.2, this is easily amendable: Basically, throughout the whole theory the
assumptions will only be used to guarantee existence of neural networks with certain
properties. Given Assumption 3.2, we will only require two layers (l = 1) to obtain
the necessary results. In the numerics however, we use more layers. If more layers are
given, one can also bundle several layers and regard them as one layer, with a different
activation function. For example:

Al ◦ ϕ ◦ Al−1 ◦ · · · ◦ A1 ◦ ϕ︸ ︷︷ ︸
ϕ

◦A0

Whenever ϕ is a mapping of the form (x1, . . . , xm) �→ (ϕ(x1), . . . , ϕ(xm)), an (l+1)-
layer network with activation function ϕ can represent any function that a two layer
networkwith activation functionϕ can represent. For ϕ(x) = max{0, x} one can easily
see that ϕ(x) = min{1,max{0, x}} is feasible, which satisfies Assumption 3.2.

3.3 Convergence

In this sectionwe study inwhat senseφm
θ,γ ( f ) converges toφ( f ) for the approximation

by neural networks.
First, we study the case of uniform convergence in m and γ , i.e. conditions for

the convergence φm
θ,γ ( f ) → φ( f ) for min{m, γ } → ∞. This is subject of Remark

3.5 below, which is a summary of results established in Sects. 2 and 3.2. The two
approximative steps leading to uniform convergence areφθ,γ ( f ) → φ( f ) for γ → ∞
and φm( f ) → φ( f ) for m → ∞.

On the other hand, sometimes the convergence φθ,γ ( f ) → φ( f ) for γ → ∞
is not satisfied even though practically one obtains a good approximation. One such
case is given in Example 3.6. Even if uniform convergence does not hold, one can
still often connect problems φm

θ,γ ( f ) and φ( f ). This is done by the approximative
steps φm( f ) → φ( f ) for m → ∞ and φm

θ,γ ( f ) → φm( f ) for γ → ∞, where the
latter is subject of Proposition 3.7. Here, instead of the strong assumption required
for φθ,γ ( f ) → φ( f ), the convergence φm

θ,γ ( f ) → φm( f ) can be shown by assuming
that all parameter sets of the neural networks are compact.

Remark 3.5 Under the assumptions of Lemma 3.3, Proposition 2.3 implies φm( f ) →
φ( f ) for m → ∞. Further, given the existence of ε-optimizers for every ε > 0 as
required in Theorem 2.2, convergence φθ,γ ( f ) → φ( f ) for γ → ∞ holds. Given
both assumptions, Proposition 2.4 yields φm

θ,γ ( f ) → φ( f ) for min{m, γ } → ∞. The
convergence φm

θ,γ ( f ) → φθ,γ ( f ) for m → ∞ is a trivial consequence.
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Example 3.6 Let X = [0, 1]2, μ1 = μ2 = δ0 and f (x1, x2) = −|x1 − x2|. Let
Q = �(μ1, μ2) be the set of all measures in X with first marginal μ1 and second
marginal μ2, so that

φ( f ) = sup
μ∈�(μ1,μ2)

∫
f dμ

Obviously, φ( f ) = f (0, 0) = 0. Note that Q = {μ1 ⊗ μ2} so that μ0 = μ1 ⊗ μ2 =
δ(0,0).

Consider two possible reference measures, θ(1) = U([0, 1]2) being the uniform
distribution on [0, 1]2, and θ(2) = μ1 ⊗ μ2 = δ(0,0). For θ(2) it is obvious that the
existence of ε-optimizers as required in Theorem 2.2 is given, since θ(2) itself is the
optimizer of φ( f ). Hence φθ(2),γ ( f ) → φ( f ) for γ → ∞ holds.

On the other hand, there does not exist ν ∈ �(μ1, μ2) with ν � θ(1), and hence
φθ(1),γ ( f ) = −∞. However, by first approximating φ( f ) by φm( f ), the functional
becomes smoother: Roughly speaking, the marginal constraints are slightly relaxed.
This becomes obvious when studying the dual formulations

φθ(1),γ ( f ) = inf
h1,h2∈Cb([0,1])

{
h1(0) + h2(0) +

∫
βγ ( f − h1 − h2) dθ(1)

}

φm
θ(1),γ

( f ) = inf
h1,h2∈Nl,1,m (�m )

{
h1(0) + h2(0) +

∫
βγ ( f − h1 − h2) dθ(1)

}

While one easily finds sequences of functions in Cb([0, 1]) so that the values at 0 go
to minus infinity but the penalty term stays bounded, this is impossible with functions
inNl,1,m(�m) given that the activation function is continuous and the parameter sets
are compact. So there is hope to establish the convergence φm

θ(1),γ
( f ) → φm( f ) for

γ → ∞, which will indeed be a consequence of the following result.

Proposition 3.7 Fix m ∈ N. Given that all parameter sets � j,m for j = 1, . . . , J of
the neural networks occurring inHm are compact and θ is strictly positive (i.e. θ gives
positive mass to every non-empty open set), it holds φm

θ,γ ( f ) → φm( f ) for γ → ∞.

4 Numerical Examples

This section aims at showcasing how various frequently studied problems that fall
into the theoretical framework of the previous sections can be implemented simply
and effectively with neural networks. The examples focus on toy problems that allow
an objective evaluation of the numerical results and give the reader an idea about the
strengths and weaknesses of the presented approach.We chose a very basic implemen-
tation using Tensorflow and the Adam optimizer.2 As for the network architecture:
In all the examples, H is as described in Sect. 3, and Nlk ,m always approximates
Cb(R

d). To approximate Cb(R
d) we use a five layer (l = 4 in the previous chapter)

2 All used code is available on https://github.com/stephaneckstein/transport-and-related.
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ReLU-network with hidden dimension 64 · d. We did not perform a hyper parameter
search to obtain this architecture, but rather oriented ourselves at papers with com-
parable settings (e.g. at [29,45,51]). Notably, increasing the complexity (number of
layers or hidden dimension) further did not change the numerical results significantly
in the cases tested, so we believe the structure chosen to be adequate for the problems
considered.

Simply put, the implementation works as follows: We perform a normal stochastic
gradient type optimization (outsourced to the Adam optimizer) for a certain number
of iterations to find near optimal parameters of the network. At each iteration during
this process, the expectations in the objective function are replaced by averages over
a fixed number (called batch size) of random points from the respective distributions.
To obtain the numerical approximation φ̂m

θ,γ ( f ) of φm
θ,γ ( f ), we finally average the

sample objective values over the last roughly 5% of iterations. This is referred to as
the dual value. Alternatively, one can use formula (2.6) to obtain sample points from
an approximate optimizer ν∗ of the primal problem and numerically evaluate

∫
f dν∗,

which is referred to as the primal value (more details on how to work with such an
approximative optimizer ν∗ is given in Sect. 4.5). If not stated otherwise, all reported
values are dual values.

The numerical procedure we use can likely be improved by fine-tuning parameters
or by using more complex network architectures. For example batch normalization
is applied in a related setting in [13] which appears to significantly speed up the
optimization.

4.1 Optimal Transport and Fréchet–Hoeffding Bounds

With this first problem, we study the effects of different penalty functions, penalty
factor, batch size and number of iterations of Let X = [0, 1]d , θ = U ([0, 1]d)
(where U(·) denotes the uniform distribution) andQ = {ν ∈ P(X ) : νi = U ([0, 1])},
where νi is the i-th marginal of ν. For some fixed z ∈ [0, 1]d , define the function
f : [0, 1]d → R+ by3

f (x) =
{
1, if xi ≤ zi for all i ∈ {1, 2, . . . , d},
0, else.

The value φ( f ) = supν∈Q
∫

f dν corresponds to the maximum value of a d-
dimensional copula at point z. By the Fréchet-Hoeffding bounds we have an analytical
solution to this problem, which is

φ( f ) = min
i∈{1,...,d} zi .

In Fig. 2 we observe how φ̂m
θ,γ ( f ) depends on the number of iterations of the

Adam optimizer and the batch size. We observe that while higher batch sizes lead

3 The function f here is not continuous. Since the optimal transport problem is continuous from below
(see e.g. [36]), the representation (2.2) nevertheless holds for all bounded measurable functions f .
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Fig. 2 Fréchet-Hoeffding bounds: d = 2, z1 = 0.5, z2 = 0.75. Comparison of L2 penalty function

βγ (x) = γ max{0, x}2 and exponential penalty function βγ (x) = exp(γ x−1)
γ . The values plotted are

running averages over the last 1000 iterations. The dotted red line is the true value φ( f ). The dotted blue
lines are bounds from below for φθ,γ ( f ) obtained by Eq. (2.5) in Theorem 2.2 for the respective choices
of γ (Color figure online)

to more stable convergence, the speed of convergence appears not strongly related
to batch size. This suggests that increasing batch sizes might lead to both quick and
finally stable performance.4 Since L2 penalization appearsmore stable, wewill mostly
use this penalization for the rest of the applications. Further, the figure illustrates
that the numerical solutions appear to approximately obtain the lower bounds for
φθ,γ ( f ) as given by Eq. (2.5) in Theorem 2.2. I.e. one approximately has φ( f ) ≈
φm

θ,γ ( f ) + 1
γ

∫
β∗( dμ̂

dθ
)dθ where μ̂ is an optimizer of φ( f ).5

4.2 Multi-marginal Optimal Transport

The aim of this example is to compare the approach of this paper with existingmethods
for a numerically challenging problem. LetX = (RD)M , whereM denotes the number
of marginals and D denotes the dimension of each marginal. Let μi for i = 1, . . . , M
be K -mixtures of normal distributions with randomly chosen parameters, and define
Q = �(μ1, . . . , μM ). For p, q ≥ 1 let

f (x) := −
( D∑

j=1

∣∣ M∑
i=1

(−1)i xi, j
∣∣q)p/q ,

where we write x = (xi, j ) ∈ X with i = 1, . . . , M , j = 1, . . . , D. Note that for
two marginals, one has −φ( f ) = W p

p,q(μ1, μ2), where Wp,q is the Wasserstein-p
distance with Lq norm on R

d .
In Table 1 we compare optimal values to this problem arising from different algo-

rithmic approaches.We compare linear programmingmethods based on discretization

4 See also [46] and references therein for related concepts on how to optimally tune the optimization
procedure. In this paper however, we decided to stick with standard parameters of the Adam optimizer and
fixed batch size. This is done to avoid another layer of complexity when evaluating the numerical results.
5 Here, μ̂ is chosen as the optimizer which is uniform on the cubes [0, z] and [z, 1].
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Table 1 Multi-marginal optimal transport: Numerical values for −φ( f ) arising from different numerical
schemes

(M, D, K ) LP NN RKHS Ref

MC Quantization Dual Primal Laplace com.

p = q = 2

(2, 1, 1) 0.403 0.408 0.413 0.401 0.364 0.405

(0.084) (0.026) (0.006)

(2, 1, 6) 3.337 3.263 3.279 3.258 2.444 3.269

(0.320) (0.115) (0.018)

(5, 2, 6) 8.978 3.073 3.123 3.041 DNC –

(8.233) (0.231)

p = 1, q = 2

(2, 1, 6) 1.536 1.537 1.537 1.531 1.471 1.533

(0.071) (0.025) (0.009)

(5, 2, 6) 2.845 1.741 1.753 1.740 DNC –

(1.314) (0.064)

(10, 3, 6) 10.235 6.744 6.759 6.743 DNC –

(3.576) (0.074)

f̃ (x) = f(x) · sin(∑M
i=1 xi,1)

(5, 2, 6) 16.814 17.380 18.001 17.539 DNC –

(0.893) (0.043)

(10, 3, 6) 24.618 23.615 34.235 32.521 DNC –

(2.332) (0.107)

The numbers in brackets are empirical standard deviations over 100 runs. LP denotes linear programming,
based on either sampling the marginals randomly (MC) or using the quantization approach from [41,
Algorithm 4.5] to approximate marginals (quantization). The neural network (NN) implementation is based
on L2 penalization with γ = M · D · 500. For the reproducing kernel Hilbert space solution (RKHS) as
described in [27, Algorithm 3] we use a Laplace kernel and the same penalization as for the NN-method.
For the final two rows, we report numerical values for −φ( f̃ ). DNC entries did not converge. The final
column are analytical reference values given by the comonotone coupling for two marginals

of the marginals, the neural network method presented in this paper, and a reproduc-
ing kernel Hilbert space (RKHS) approach as described in [27, Algorithm 3]. For the
linear programming methods, we use a maximal number of variables of 106, which
was around the boundary so that Gurobi [31] was still able to solve the resulting linear
program on our computer. Regarding the RKHS algorithm we have to mention that it
is the only method that is not building on an established package like Tensorflow or
Gurobi. Hence efficiency with respect to running time and tuning of hyperparameters
might be far from optimal for this approach. Notably, switching from exponential
penalization as used in [27] to L2 penalization was already a slight improvement. For
the precise specifications of each algorithm and the problem setting, we refer to the
code on https://github.com/stephaneckstein/OT_Comparison.

Evaluating the results, we find that the neural network based method and the linear
programmingmethodwith quantization appear to work best. Surprisingly, even for the
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case with 10marginals (where the linear program can only use 4 points to approximate
eachmarginal!), the quantizationmethod achieved a similar value as the neural network
method for −φ( f ). We believe the reason is that the function f is very smooth which
a quantization approach can exploit. Hence we slightly changed f to f̃ in the final
two test cases, which makes the function less regular. These are the only cases where
the neural network solution and the quantization method strongly differ. In the final
case, the quantization approach still has to approximate each marginal distribution
with just 4 points, while the neural network method can use millions of points. From
this standpoint, one can place higher trust in the neural network solution, even though
we have no analytical reference value to compare it against.

Initially, we included a fourth method based on the approach in this paper, but with
a polynomial basis instead of neural networks. This performed very badly however
(at least when using a standard monomial basis), and hence we omitted the results in
this table.

4.3 Martingale Optimal Transport

In martingale optimal transport, the optimal transport problem is extended by impos-
ing a martingale constraint on top of marginal constraints. Dimensions are regarded
as discrete time-steps and the measures in Q are distributions of discrete stochastic
processes (Xt )t=1,...,d with fixed marginal distributions as well as the condition that
the process is a martingale.

Here, we consider a simple example with d = 2, where an analytical solution is
known. This example is taken from [2]. Let X := [−1, 1] × [−2, 2], θ := U(X ) and
set

Q :=
{
ν = ν1 ⊗ K : ν1 = U([−1, 1]), ν2 = U([−2, 2]),

x =
∫ 2

−2
yK (x, dy) holds ν1-a.s.

}
.

For f = −|x − y|ρ one gets φ( f ) = −1 for all ρ > 2. We implement this problem
with ρ = 2.3, where we use the L2 penalty function for different values of γ . The
results are shown in Fig. 3. One can see thatwhile for values of γ up to around 1280, the
behavior of the optimal value is approximately as predicted by Eq. (2.5) in Theorem
2.2, in that the error decreases by roughly a factor of two if γ is increased by a factor
of two. For larger values of γ however, numerical instabilities occur and the optimizer
cannot find the true optimum. This is indicated by the fact that the value φ̂m

θ,γ ( f ) is
above φ( f ) = −1.

4.4 Portfolio Optimization

Consider amarket with two assets, where the distribution of returns for each individual
asset is given, but not the joint distribution. An investor wants to maximize his or her
worst-case utility from investing into the two assets. Here, the utility of the investor
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Fig. 3 Martingale optimal transport: Mean numerical optimal values and 95% confidence bounds over 100
independent runs for different values of γ (L2 penalization). The network is trained for 20,000 iterations
with batch size 1024. The true optimal value of the unpenalized problem is −1

is characterized by a mean-variance objective. While the mean is fully characterized
by the marginal distributions, the worst case considers all possible variances of the
portfolio, which depend on the joint distribution of the assets.

The following example is taken from [42]: Let X = [0, 1] × [0, 2]. Let θ1 =
U([0, 1]) and θ2 = U([0, 1]) ◦ ϕ−1, where ϕ(x) = 2x2. Let Q = {ν ∈ P(X ) : ν1 =
θ1, ν2 = θ2}. Wewill solve the following robust mean-variance portfolio optimization
problem

sup
x∈[0,1]

−φ(− fx )

:= sup
x∈[0,1]

inf
ν∈Q

∫
(1 − x)ξ1 + xξ2

− λ

(
(1 − x)ξ1 + xξ2 − (1 − x)

∫ 1

0
ζ1 θ1(dζ1) − x

∫ 2

0
ζ2θ2(dζ2)

)2

ν(dξ).

where λ ≥ 0 is the risk aversion. The integral over the term inside the large brackets
is the variance of the portfolio. For the analytical solution, see Example 1 of [42]. We
implemented the above problem in two ways. For the first, we choose the reference
measure θ(1) = θ1⊗θ2. For the second, we use the referencemeasure θ(2) = 0.5θ(1)+
0.5

(U([0, 1]) ◦ (Id, ϕ)−1
)
,6 i.e. half the product measure, half the perfectly correlated

measure. The second versionmay correspond to our intuition that the optimal coupling
should include positive correlation. More precisely: The choice of reference measure
θ always has the implicit objective to lead to narrow bounds in Eq. (2.5) in Theorem

6 Id denotes the identity mapping.
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Fig. 4 Portfolio optimization under dependence uncertainty: As reference measure we take either the
product measure or a positively correlated measure. We use L2 penalization with γ = 160. The network is
trained with batch size 213 for 40,000 iterations

2.2. In this example, if one presumes that an optimal measure ν∗ ∈ Q has mass near
the perfectly correlated diagonal, it makes sense to choose a reference measure which
puts mass in this region, as does θ(2). The results are reported in Fig. 4. As expected,
the second version yields results closer to the analytical solution.

4.5 Bounds on the Distribution of a Sum of Dependent RandomVariables

In this section, the objective is to findbounds for the probabilityP(X1+X2+· · ·+Xd ≥
s) for some s ∈ R, where the individual distributions of Xi are known, but not their
joint distribution. This problem is in strong relation to calculating worst- and best-case
value at risks under dependence uncertainty, see also [19,21,43].

Let X = R
d . For given marginals μ1, . . . , μd ∈ P(R) and Q = �(μ1, . . . , μd),

the problem statement is

φ( f ) := sup
ν∈Q

∫
1{x1+···+xd≥s} ν(dx1, . . . , dxd).

For simplicity, we consider the case d = 2, and μi = U([0, 1]). Let s = 1.9. Every
optimal measure ν ∈ Q gives mass 1/10 uniformly to the line section {(x, 1.9 −
x) : 0.9 ≤ x ≤ 1}, while the rest of the mass is irrelevant as long as the marginal
condition is satisfied. This leads to an optimal value φ( f ) = 0.1. For the natural
choice of reference measure θ = U([0, 1]2), every optimal measure is singular with
respect to θ , and thus one can expect high errors by penalization. An implementation
with this reference measure and L2 penalization with γ = 320 leads to φ̂m

θ,γ ( f ) ≈
0.0881.7

Updating the reference measure: To obtain a more accurate value, we make use of Eq.
(2.6) in Theorem 2.2. Recall that an optimizer ν̂ ∈ Q of φθ,γ ( f ) is given by d ν̂

dθ
=

β ′( f − ĥ), where ĥ is the dual optimizer of φθ,γ ( f ). Taking ν̂ as a reference measure

7 The network was trained for 20000 iterations with batch size 1024.
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Fig. 5 Bounds on the distribution of the sum of dependent variables: Sampled points from the numerically
optimal measure ν∗ and the corresponding empirical marginal distributions

instead of θ can only reduce the error by penalization, since φν̂,γ ( f ) ≥ φθ,γ ( f ) holds
by convexity of β∗

γ . Implementing the problem with ν̂ as a reference measure has to

be done approximately, since the true optimizer ĥ is unknown and replaced by the
numerical optimal solution. We denote the numerically obtained optimal measure by
ν∗.

To implement φm
ν∗,γ ( f ) requires sampling points from ν∗. This is non-trivial since

ν∗ is only given by dν∗
dθ

. We implemented this by an acceptance-rejection method as
described in [23]. This is very slow, as the number of rejections increases with the
maximum of the Radon-Nikodym derivative. Sampling efficiently in such a situation
is difficult, see e.g. [33] for an overview of existing methods and a proposed new one.

Figure 5 illustrates the optimal measure ν∗. The measure ν∗ looks comparable to
an optimal solution of φ( f ), while simultaneously being driven towards the reference
measure θ . One obtains φ̂m

ν∗,γ ( f ) ≈ 0.0982, which is close to the true optimal value
0.1.

In the following, we briefly discuss the rearrangement algorithm [21,43] which
is tailored to this type of problem. In contrast to the presented approach, which
relies on sampling from the involved marginal distributions, the rearrangement algo-
rithm mainly relies on the (inverse of) the cumulative distribution function of the
marginals. The rearrangement algorithm achieves similar or even better accuracy
in higher dimensional settings and with different marginals (e.g. Pareto marginals).
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The case of higher dimensions scales well with the approach taken here. However,
the base time in low dimensions is higher than that of the rearrangement algo-
rithm, and further heavy tailed marginals like the Pareto distribution can lead to less
accuracy.8

4.6 Generative Adversarial Networks (GANs)

The objective in GANs is to create new sample points from a measure μ, of which
only an empirical distribution μ̃ is known (see e.g. [3,28]). Usually, the measure μ

might refer to the uniform distribution over some very large set of images. The set μ̃
is then just the uniform distribution over a small subset of these images. The goal is
to sample new images that are not already present in the given subset, but that might
plausibly have been samples from the measure μ.

To proceed, we first take some latent probability measure τ . The goal is to obtain a
function G such that μ and the push-forward measure τ ◦G−1 are close (in a sense to
be specified), and thus the pseudo samples for μ can be obtained by sampling from τ

and applying G. To find such a function G out of a class of functions G, one can only
use μ̃ instead ofμ (thusμ does not enter the formal problem statement). The closeness
of μ̃ and τ ◦G−1 is measured by different distances in GANs. In theWasserstein GAN,
the first Wasserstein distance W1(·, ·) (see e.g. [50]) is used, and the objective is

argmin
G∈G

W1(τ ◦ G−1, μ̃).

The above can be generalized to arbitrary transport distances instead of the first
Wasserstein distance. To put this into our setting, let G a set of functions that map into
X1. LetX = X1 ×X1 and for G ∈ G defineQG := {ν ∈ P(X ) : ν1 = τ ◦G−1, ν2 =
μ̃}. For a cost function c, arbitrary transport type GANs can be expressed via

argmin
G∈G

−φG(−c) = argmin
G∈G

inf
ν∈QG

∫
c dν

If c is a metric, the above corresponds to the Wasserstein GAN.
Since it is difficult to objectively evaluate GAN setups, we omit numerical results in

this section. The interested reader can see the code on GitHub, where the toy problems
appearing in [29] are implemented for different functions c.9

8 We refer to https://github.com/stephaneckstein/transport-and-related, where different specifications
(including Pareto marginals) of the problem in this section are implemented.
9 For the implementation, we merely adjusted code from https://github.com/igul222/
improved_wgan_training to our method. See again https://github.com/stephaneckstein/transport-and-
related.
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5 Proofs

5.1 Proof of Theorem 2.2

(1) We first show (2.4) by verifying that φθ,γ is real-valued and continuous from
above on Cb(X ). To that end, as shown in Appendix A one has φ∗(μ) =
suph∈H(

∫
h dμ − ∫

h dμ0) for all μ ∈ P(X ), so that

μ ∈ Q if and only if
∫

h dμ =
∫

h dμ0 for all h ∈ H. (5.1)

Since βγ (x) ≥ xy − 1
γ
β∗(y) for all x ∈ R and y ∈ R+, it follows that

∫
βγ ( f − h) dθ ≥

∫
f − h dπ − 1

γ

∫
β∗(dπ

dθ

)
dθ

so that

φθ,γ ( f ) = inf
h∈H

{ ∫
h dπ +

∫
βγ ( f − h) dθ

}

≥
∫

f dπ − 1

γ

∫
β∗(dπ

dθ

)
dθ > −∞

for all f ∈ Cb(X ). This shows that φθ,γ is real-valued on Cb(X ). Further, let
( f k) be a sequence in Cb(X ) such that f k ↓ f . For every h ∈ H the mono-
tone convergence theorem implies

∫
βγ ( f k − h) dθ → ∫

βγ ( f − h) dθ , so that
φθ,γ ( f k) ↓ φθ,γ ( f ). Hence, it follows from the nonlinear Daniell-Stone theorem
(see Proposition A.1) that

φθ,γ ( f ) = max
μ∈P(X )

{ ∫
f dμ − φ∗

θ,γ (μ)
}

for all f ∈ Cb(X ),

where the convex conjugate is given by

φ∗
θ,γ (μ) = φ∗(μ) + ψ∗

θ,γ (μ) =
{

1
γ

∫
β∗( dμ

dθ

)
dθ if μ ∈ Q and μ � θ

∞ else.

Indeed, the convex conjugate of the convolution inf f ∈Cb(X ){φ( f )+ψθ,γ (·− f )}
is given as the sum of the convex conjugates φ∗ and ψ∗

θ,γ . By (5.1) one has
φ∗(μ) = 0 if μ ∈ Q and φ∗(μ) = +∞ otherwise. Moreover,

ψ∗
θ,γ (μ) = sup

f ∈Cb(X )

{ ∫
f dμ −

∫
βγ ( f ) dθ

}

= sup
f ∈Cb(X )

{ ∫
f
dμ

dθ
− βγ ( f ) dθ

}
=
∫

β∗
γ

(dμ

dθ

)
dθ

if μ � θ and ψ∗
θ,γ (μ) = +∞ otherwise.
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(2) We next show (2.5). On the one hand, one has

φθ,γ ( f ) = inf
h∈H

{ ∫
h dμ0 +

∫
βγ ( f − h) dθ

}

≤ inf
h∈H:
h≥ f

∫
h dμ0 + βγ (0) = φ( f ) + β(0)

γ
.

On the other hand, for every ε-optimizer με ∈ Q of (2.2) such that με � θ one
has

φ( f ) ≤
∫

f dμε + ε ≤
∫

f dμε − φ∗
θ,γ (με) + φ∗

θ,γ (με)

+ ε ≤ φθ,γ ( f ) + 1

γ

∫
β∗(dμε

dθ

)
dθ + ε

with the convention −∞ + ∞ = +∞.
(3) Let ĥ ∈ H be a minimizer of (2.3), i.e. φμ,γ ( f ) = ∫

ĥ dμ0 + ∫
βγ ( f − ĥ) dθ .

Defining hλ := ĥ + λh for an arbitrary h ∈ H, the first order condition

d

dλ

∣∣∣
λ=0

( ∫
hλ dμ0 +

∫
βγ ( f − hλ) dθ

)
= 0

implies

∫
h dμ0 −

∫
β ′

γ ( f − ĥ)h dθ = 0.

This shows that the probability measure μ̂with Radon-Nikodým derivative dμ̂
dθ

:=
β ′

γ ( f −ĥ) satisfies
∫
h dμ0 = ∫

h dμ̂ for all h ∈ H, which in viewof (5.1) satisfies

μ̂ ∈ Q. Integrating the identity βγ (x) = xβ ′
γ (x) − β∗

γ (β ′
γ (x)) with x = f − ĥ

w.r.t. θ , one obtains

∫
βγ ( f − ĥ) dθ =

∫
f − ĥ dμ̂ −

∫
β∗

γ

(dμ̂

dθ

)
dθ

which shows that

φθ,γ ( f ) =
∫

ĥ dμ0 +
∫

βγ ( f − ĥ) dθ =
∫

f dμ̂ −
∫

β∗
γ

(dμ̂

dθ

)
dθ.

As a consequence, μ̂ ∈ Q is a maximizer of (2.4). ��

5.2 Proof of Proposition 2.3

Fix f ∈ Cb(X ). That limm→∞ φm( f ) = φ∞( f ) ≥ φ( f ) follows from the definition
ofH∞. Moreover, for every ε > 0 the Condition (D) guarantees h ∈ H∞ and K ⊆ X
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such that 1Kc ≤ h and
∫
h dμ0 ≤ ε. Hence, φ∞(1Kc ) ≤ ∫

h dμ0 ≤ ε and Dini’s
lemma implies that φ∞ is continuous from above on Cb(X ). By Proposition A.1 it
follows that

φ∞( f ) = max
μ∈P(X )

{ ∫
f dμ − φ∞∗(μ)

}
.

Similar to (A.2) its convex conjugate is given by

φ∞∗(μ) = sup
h∈H∞

( ∫
h dμ −

∫
h dμ0

)
≤ sup

h∈H

( ∫
h dμ −

∫
h dμ0

)
= φ∗(μ).

It remains to show that for h ∈ H and μ ∈ P(X ) with
∫
h dμ − ∫

h dμ0 > 0 there
exists h′ ∈ H∞ such that

∫
h′ dμ − ∫

h′ dμ0 > 0. But this follows directly from the
first part of Condition (D) for the probability measure 1

2μ + 1
2μ0. Indeed, there exists

a sequence (hn) inH∞ such that hn → h in L1(μ) and in L1(μ0), which shows that∫
hn dμ − ∫

hn dμ0 > 0 for n large enough. ��

5.3 Proof of Proposition 2.4

Observe that

φm( f ) + βγ (0) ≥ inf
h∈Hm :
h≥ f

{ ∫
h dμ0 +

∫
βγ ( f − h) dθ

}
≥ φm

θ,γ ( f ) ≥ φθ,γ ( f )

where the first inequality uses that βγ is increasing, the second inequality just drops
the constraint h ≥ f , and the third inequality follows from Hm ⊆ H.

Fix ε > 0. By Condition (D) and Theorem 2.2 there exist m0 ∈ N and γ0 > 0 such
that

φm( f ) ≤ φ( f ) + ε and φ( f ) ≤ φθ,γ ( f ) + ε

for all m ≥ m0 and γ ≥ γ0. This shows that

φ( f ) + ε + β(0)

γ
≥ φm( f ) + βγ (0) ≥ φm

θ,γ ( f ) ≥ φθ,γ ( f ) ≥ φ( f ) − ε

for all m ≥ m0 and γ ≥ γ0, which shows that φm
θ,γ ( f ) → φ( f ) whenever

min{m, γ } → ∞. ��

5.4 Proof of Lemma 3.3

(a) From Hornik [34] it follows thatNl j ,d j is dense in Cb(R
d j ) with respect to L1(μ)

for every μ ∈ P(Rd j ) and all j = 1, . . . , J . By the triangle inequality and
boundedness of e j , the first part of Condition (D) follows.
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(b) If X is compact, the condition is trivially satisfied. Hence assume that X = R
d =

R
d1 × · · · × R

dJ0 and π j = pr j , e j = 1 for j = 1, . . . , J0 ≤ J , where pr j is the
projection from R

d to the j-th marginal component in Rd j .
Let ε > 0 and μ ∈ P(X ). We first fix j , denote by μ( j) := μ ◦ pr−1

j and show

that there exists a h′′
j ∈ Nl j ,d j such that 1Kc

j
≤ h′′

j and
∫
R
d j h

′′
j dμ( j) ≤ 2ε for

some compact subset K j of Rd j . Without loss of generality, assume that l j = 1.
This can always be done since the function h′′

j will be compact-valued and hence
for multiple layers, the remaining layers beyond the first can simply approximate
the identity function in the supremum norm.10 Fix K j = [−c,+c]d j such that
μ( j)(Kc

j ) ≤ ε/(4d j ). By assumption on ϕ, for each i ∈ {1, . . . , d j } there exist

ai , bi , ai , bi ∈ R such that

ϕ(ai xi + bi ) + ϕ(ai xi + bi )

{
≤ ε/(2d j ) for xi ∈ [−c, c]
≥ 1 − ε for xi /∈ [−c − 1, c + 1].

Then

h′′
j :=

d j∑
i=1

ϕ(ai xi + bi ) + ϕ(ai xi + bi ) + ε ∈ N1,d j ,2d j ⊂ N1,d j

satisfies 1K̃ c
j
≤ h′′

j for the compact K̃ j := [−c − 1, c + 1]d j , as well as

∫
R
d j
h′′
j dμ( j) ≤

∫
R
d j

ε

2
1K j + 2d1Kc

j
dμ( j) + ε ≤ ε

2
+ 2dμ( j)(Kc

j ) + ε ≤ 2ε.

Now, define h′′ := ∑d
j=1 h

′′
j ◦ pr j ∈ H∞ and K := ∏J0

j=1 K̃ j ⊂ X , which is
compact. Then one immediately gets 1Kc ≤ h′′ and

∫
h′′dμ ≤ 2J0ε.

5.5 Proof of Proposition 3.7

(1) For one fix network Nl j ,d j ,m , the mapping ξ �→ Nl j ,d j ,m(ξ) is pointwise con-
tinuous, i.e. it holds for ξn → ξ that Nl j ,d j ,m(ξn)(x) → Nl j ,d j ,m(ξ)(x) for all
x ∈ R

d j , since ϕ is continuous. Further, since we assume that ϕ is bounded, the
functions Nl j ,d j ,m(ξn) are uniformly bounded and hence by dominated conver-
gence one obtains Nl j ,d j ,m(ξn) → Nl j ,d j ,m(ξ) in L1(μ) for all μ ∈ P(Rd j ). By
the triangle inequality, this continuity transfers to the mapping (ξ1, . . . , ξJ ) �→∑J

j=1 e j Nl j ,d j ,m(ξ j ) ◦ π j . Hence, we can write

Hm = {η(A) + a : A ∈ Am, a ∈ R}
10 More precisely, the function h′′

j as given by one layer would be the input in the first component for the

remaining layers, and the remaining layers approximate the continuous function [−z, z]m � x �→ x1 in the
supremum norm, which is possible as shown in [34].
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where A �→ η(A) is continuous in L1(μ0) and L1(θ), and Am is compact.
(2) For every ε > 0 there exists η(A) + a ∈ Hm with η(A) + a ≥ f such that

φm( f ) + ε ≥
∫

η(A) + a dμ0

= lim
γ→∞

{ ∫
η(A) dμ0 + a +

∫
βγ ( f − η(A) − a) dθ

}

≥ lim sup
γ→∞

φm
θ,γ ( f )

since 0 ≤ ∫
βγ ( f − η(A) − a) dθ ≤ βγ (0) = 1

γ
β(0).

On the other hand, let (γn) be a sequence inR+ with γn → ∞. Our goal is to show
that φm( f ) ≤ lim infn→∞ φm

θ,γn
( f ). We assume that lim infn→∞ φm

θ,γn
( f ) < ∞

otherwise there is nothing to prove. For every n ∈ N there exist An ∈ Am and an ∈ R

such that

φm
θ,γn

( f ) + 1

n
≥
∫

η(An) dμ0 + an +
∫

βγn

(
f − η(An) − an

)
dθ

≥
∫

η(An) dμ0 +
∫

f − η(An) + c dθ (5.2)

since βγn (x) ≥ x + c for all n ∈ N for some constant c ∈ R. In particular,
lim infn→∞ φm

θ,γn
( f ) is real-valued as A �→ ∫

f − η(A) + c dθ is a continu-
ous function on the compact Am . By passing to a subsequence we may assume
that limn→∞ φm

θ,γn
( f ) = lim infn→∞ φm

θ,γn
( f ), and An → A ∈ Am such that

η(An) → η(A) in L1(θ) and θ -a.s. as well as
∫

η(An) dμ0 → ∫
η(A) dμ0. We

next show that (an) is bounded. Suppose by way of contradiction that an → −∞.
Since limx→∞ β(x)/x = ∞ and f − η(An) is uniformly bounded by compactness
of Am , it follows that

∫
η(An) dμ0 + an + βγn

(
f − η(An) − an

) → +∞

Moreover, in view of (5.2) the sequence

(∫
η(An) dμ0 + an + βγn

(
f − η(An) − an

))−

is uniformly integrable in L1(θ). Hence, it follows from Fatou’s lemma that

+∞ =
∫

lim inf
n→∞

{ ∫
η(An) dμ0 + an + βγn

(
f − η(An) − an

)}
dθ

≤ lim inf
n→∞

{ ∫
η(An) dμ0 + an +

∫
βγn

(
f − η(An) − an

)
dθ
}

≤ lim inf
n→∞ φm

θ,γn
( f ) < ∞
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which is the desired contradiction. This shows that (an) is bounded and by passing to
a subsequence an → a ∈ R. Finally it follows from Fatou’s lemma that

lim inf
n→∞ φm

θ,γn
( f ) = lim inf

n→∞
{ ∫

η(An) dμ0 + an +
∫

βγn

(
f − η(An) − an

)
dθ
}

≥
∫

η(A) dμ0 + a +
∫

β∞
(
f − η(A) − a

)
dθ

=
∫

η(A) + a dμ0

≥ φm( f )

where β∞(x) = 0 if x ≤ 0 and β∞(x) = ∞ if x > 0. The second inequality follows
because η(A)+a ≥ f θ -a.s. as a consequence of the first inequality, f , η(A) ∈ Cb(X )

and θ is strictly positive. ��

A Nonlinear version of the Daniell-Stone theorem

Let X be a Polish space. Given a measurable function κ : X → [1,∞), we denote by
Cκ(X ) the Stone vector lattice of all continuous functions f : X → R such that | f |/κ
is bounded. For instance, if κ is bounded one hasCκ(X ) = Cb(X ), or if κ(x) = 1+|x |
onX = R

d the space Cκ(Rd) contains all continuous functions f : Rd → R of linear
growth. Further, let ca+

κ (X ) be the set of all Borel measures μ on X which satisfy∫
κ dμ < ∞. The following nonlinear version of the Daniell-Stone theorem follows

directly from Proposition 1.1 in [15].

Proposition A.1 Let φ : Cκ(X ) → R be an increasing11 convex functional which is
continuous from above, i.e. φ( f n) ↓ 0 for every sequence ( f n) such that f n ↓ 0.
Then, it has the dual representation

φ( f ) = max
μ∈ca+

κ (X )

{ ∫
f dμ − φ∗(μ)

}
for all f ∈ Cκ(X ), (A.1)

where the convex conjugate φ∗ : ca+
κ (X ) → R ∪ {+∞} is given by φ∗(μ) =

sup f ∈Cκ (X ){
∫

f dμ − φ( f )}.
Continuity from above is strongly related to the concept of tightness, which in the
context of risk measures was introduced by Föllmer and Schied, see [24]. Typical
examples include transport type problems where tightness is imposed by marginal
constraints, see e.g. Bartl et al. [5]. For extensions of the representation (A.1) to upper
semicontinuous functions and related pricing-hedging dualities we refer to Cheridito
et al. [16].

As an application we consider the superhedging functional

φ( f ) := inf
{ ∫

h dμ0 : h ≥ f for some h ∈ H
}

11 φ( f ) ≥ φ(g) whenever f ≥ g.
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on Cκ(X ), where μ0 ∈ ca+
κ (X ) is a probability measure and H ⊆ Cκ(X ) is a

convex cone such that κ ∈ H. Straightforward inspection shows that φ is a real-valued
increasing convex functional on Cκ(X ). Further, if φ is continuous from above by
Proposition A.1 it has the dual representation (A.1). Its convex conjugate is given by

φ∗(μ) = sup
f ∈Cκ (X )

{ ∫
f dμ − inf

h∈H:
h≥ f

∫
h dμ0

}

= sup
h∈H

sup
f ∈Cκ (X ):

h≥ f

{ ∫
f dμ −

∫
h dμ0

}

= sup
h∈H

{ ∫
h dμ −

∫
h dμ0

}
. (A.2)

Since H is a convex cone which contains the constants it follows that φ∗(μ) = 0
whenever μ ∈ ca+

κ (X ) is a probability measure such that
∫
h dμ = ∫

h dμ0 for
all h ∈ H, and φ∗(μ) = +∞ else. In particular, in case that Cκ(X ) = Cb(X ) we
conclude the dual representation (2.2).
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