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Abstract

The mixed no-idle flowshop scheduling problem arises in modern industries including integrated circuits, ceramic frit and
steel production, among others, and where some machines are not allowed to remain idle between jobs. This paper describes
an exact algorithm that uses Benders decomposition with a simple yet effective enhancement mechanism that entails the
generation of additional cuts by using a referenced local search to help speed up convergence. Using only a single additional
optimality cut at each iteration, and combined with combinatorial cuts, the algorithm can optimally solve instances with up
to 500 jobs and 15 machines that are otherwise not within the reach of off-the-shelf optimization software, and can easily
surpass ad-hoc existing metaheuristics. To the best of the authors’ knowledge, the algorithm described here is the only exact
method for solving the mixed no-idle permutation flowshop scheduling problem.

Keywords Flowshop scheduling - Mixed no-idle - Benders decomposition - Referenced local search

1 Introduction

The permutation flowshop scheduling problem (PFSP) is
concerned with sequencing a set N of n jobs on a set M
of m machines in a sequential manner. Each job j has a
known, fixed, nonnegative amount of processing time on
machine i denoted by p;; (. = 1,...,m; j =1,...,n).
At any point in time, each job can be processed by at most
one machine and each machine can process at most one job.
When a machine starts processing a job, it must complete
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that job without interruption, as no preemption is allowed.
The sequence of jobs to be processed is the same for each
machine, implying that there are n! possible solutions of the
problem. One extension of the PFSP is the no-idle permuta-
tion flowshop scheduling problem (NPFSP), where machines
should run continuously from the time that they start the first
job until they complete the last job, i.e., idle times are not
allowed at any machine in between the processing of con-
secutive jobs. The problem arises in production environments
where setup times or machine operating costs are significant,
so it is not cost-effective to let the machines sit idle at any
point during the production run (Pan and Ruiz 2014), such
as foundry production (Saadani et al. 2003), fiber glass pro-
cessing (Kalczynski and Kamburowski 2005), production of
integrated circuits and in the steel industry (Pan and Ruiz
2014). In other real-life cases, and as pointed out by Ruiz
etal. (2009), there might be technological constraints imped-
ing idleness at machines such as high-temperature frit kilns,
for example.

The first study on the NPFSP was by Adiri and Poho-
ryles (1982), defined on two machines with the objective of
minimizing the sum of completion times. A more popular
objective has been to minimize the total makespan, namely
the sum of the completion times of the last job processed on

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s10951-020-00637-8&domain=pdf

514

Journal of Scheduling (2020) 23:513-523

each machine, for which the first study was contributed by
Vachajitpan (1982), where mathematical models and branch-
and-bound methods for solving small-scale instances were
presented. One exact method using branch-and-bound was
described by Baptiste and Hguny (1997). Comprehensive
reviews on the problem can be found in Ruiz and Maroto
(2005) and Goncharov and Sevastyanov (2009), which indi-
cated an abundance of heuristic algorithms described to solve
the problem, including discrete differential evolution and
particle swarm optimization (Pan and Wang 2008a,b), iter-
ated greedy search (Ruiz et al. 2009), variable neighborhood
search (Tasgetiren et al. 2013) and memetic algorithms (Shao
et al. 2017). To date, however, no effective exact approach
has been proposed for NPFSP, and the attempts that exist can
solve instances with only more than a handful of jobs (Pan
and Ruiz 2014).

The mixed no-idle permutation flowshop scheduling prob-
lem (MNPFSP) arises as a more general case of the NPFSP
when some machines are allowed to be idle, and others not.
Examples can be found in the production of integrated cir-
cuits and ceramic frit, as well as in the steel industry (Pan and
Ruiz 2014). In ceramic frit production, for example, only the
central fusing kiln has the no-idle constraint. As an exten-
sion of the PFSP, which is known to be NP-hard for three or
more machines (see, e.g., Rock 1984), the MNPFSP is also
NP-hard in the strong sense (Pan and Ruiz 2014). The only
study on this problem that minimizes makespan is that of Pan
and Ruiz (2014), which describes a mixed integer program-
ming model for the problem, an effective iterated greedy (IG)
algorithm and enhancements to accelerate the calculation of
insertions used within the local search. Computational results
showed that, in comparison with the existing methods, the
IG algorithm was able to identify solutions for the NPFSP
instances that were 61% better, on average, with respect to
the makespan. However, no exact method, to our knowledge,
has been proposed to solve the MNPFSP, which is the aim
of this paper. In particular, we contribute to the literature by
describing an application of Benders decomposition that is
enhanced with a referenced local search (RLS) that is used to
generate additional cuts to accelerate the convergence of the
algorithm. We propose and test three cut generating strategies
and use combinatorial cuts to discard solutions already evalu-
ated. The algorithms described in this paper are all exact, the
performance of which we computationally assess on a test
bed of literature instances, and compare with the commercial
optimizer CPLEX and its automated Benders decomposition
algorithm.

The remainder of this paper is structured as follows.
Section 2 formally defines the problem and presents a for-
mulation. The proposed algorithm is described in detail in
Sect. 3. Computational results are presented in Sect. 4, fol-
lowed by conclusions and future research in Sect. 5.
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2 The mixed no-idle permutation flowshop
scheduling problem

We denote by () the job occupying position j in a given
permutation 7. The PFSP requires the condition c¢; »;, >
Cimj_1y T Ping, 1O hold for any two consecutive jobs in
any permutation, where ¢; ; is the completion time of task
j at machine i. A key difference between the NPFSP and
the PFSP is that the former forbids any idle time between
any two consecutive tasks, thus transforming the previous
inequality into an equality as Cimy = Ci,mjory T Ping)- The
mixed no-idle problem generalizes two problems in which
there exists a subset M’ € M of m’ ‘no-idle’ machines, and
it is only for those machines in M \ M’ that any idle running
is allowed. Apart from these key differences, the common
PFSP assumptions hold (Baker 1974): (1) Jobs are indepen-
dent from each other and are available for their processing
from time 0; (2) machines are always available (no break-
downs); (3) machines can process only one task at any given
time; (4) jobs can be processed by only one machine at all
times; (5) tasks must be processed without interruptions once
started and until their completion (no preemptions allowed);
(6) setup times are either sequence-independent and can be
directly included in the processing times, or are considered
negligible and therefore ignored; and finally (7) there is an
infinite in-process buffer capacity between any two machines
in the shop.

In the remainder of the paper, we make use of the integer
programming formulation below of the problem described in
Pan and Ruiz (2014), provided here for the sake of complete-
ness. In this formulation, a binary variable x j; takes the value
1 if job j is in position k of the sequence, and O otherwise.
Continuous variables ¢; ; denote the completion time of job

k=1,...,nonmachinei =1,...,m.
Minimize Cm.n @))
subject to

n
ijk=1 j=1,...,n )
k=1
n
D xip=1 k=1,....n 3)
j=1
n
Cl,kZZpljle k=1,...,n 4)
j=1
n
Cik — Ci—1k = Zpijxjk k=1,...,ni=2,...,m
j=1
®)
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n
Cik — Cik—1 ZZpinjk k=2,....,niieM (6)
j=1

n
. ’
Cik — Cik—1 ZZPijxjk k=2,....nie M\ M

j=1
(7
cix >0 k=1,....n;i=1,....m
(3)
xjx €10, 1} J,k=1,...,n. )

Objective function (1) minimizes the makespan among all
jobs. In the PFSP and also for the MNPFSP, the makespan
corresponds to the completion time of the last job in the
permutation at the last machine of the shop (¢, ,). With
constraints (2) and (3), we enforce that any job occupies
one position in the permutation and also that each position
at any permutation is occupied by one job. Constraints (4)
control the completion time of the first job in the permu-
tation. Constraints (5) enforce that the completion times of
jobs on the second and subsequent machines are larger than
the completion times of the preceding tasks of the same job
on previous machines plus their processing time, effectively
avoiding overlaps of the tasks of the same job. The key char-
acteristic of the MNPFSP is shown in constraints (6) and (7).
Constraint (6) forbids idle time at ‘no-idle’ machines by mak-
ing the completion time of a job equal to the completion time
of the previous job in the sequence plus its processing time.
Inequality (7) is the usual PFSP constraint that forbids over-
laps of jobs on the same machine and, at the same time, allows
for idle time.

3 Benders decomposition

In this section, we first describe an application of the tradi-
tional Benders decomposition followed by the proposed cut
generation strategy using a local search algorithm.

3.1 Application of Benders decomposition

Benders decomposition (Benders 1962) is a cutting plane
algorithm to solve a Benders reformulation of a given model
that enables it to be decomposed into two simpler formula-
tions, namely the master problem and the subproblem. The
master problem contains only a subset of the variables and
of the constraints of the original model. The subproblem is
the original model in which the master problem variables
are fixed, and the solution of which yields either an opti-
mality or a feasibility cut for the master problem (Costa
etal. 2012). Benders reformulation is typically solved using a
delayed constraint generation algorithm that iterates between

the master and the subproblem, until an optimal solution is
identified.

Let M(c, x) denote the formulation (1)—(9) where x =
{xjklj, bk = 1,....,n} and ¢ = {culk = 1,...,n;i =
1, ..., m}arethe vectors of the decision variables. Let us sup-
pose that variables x have been fixedas x = X € X = {x|x
satisfies (2), (3), (9)}. The resulting formulation, shown by
M(c, x), consists only of the variables c, the constraints
of which are assigned the dual variables « and S corre-
sponding to constraints (4) and (5), respectively, and y
corresponding to constraints (6) and (7), respectively. The
dual D(a, B, y, x) of M(c, x) formulation is given by the
following:

n n n m n
Maximize ijlplj Zak + ZZﬁikZ)?jkPij
j=1

k=1 k=1i=2  j=1
n m n
Y0 iy _Rjwpij (10)
k=2i=1  j=1
subject to
ok = Bit1k = Viks1 =0 k=i=1 (11)

ar = Bit1k +Vik — Vik+1 <0

(12)
ok — Bit1k +vik <0 k=n,i=1 (13)
Bik — Bi+1k — Vik+1 <0 k=1i=2,....m—1
(14)
Bik — Bi+1k +Vik — Vik+1 <0 k=2,..., n—1
i=2,..., m—1 (15)
Bik — Biv1k +vik <0 k=ni=2,...,m—1
(16)
Bik —Vik+1 =0 k=1li=m (17)
Bik +Vik —Vik+1 <0 k=2,..., n—1,i=m
(18)
Bisk +vik <1 k=n;i=m (19)
a >0 k=1,....n (20)
Bik =0 k=1 ni=2,..., m
(2D
Yik =0 k=2,..., nyieM\ M.
(22)

The procedure to calculate the makespan we use here is
the one proposed in Pan and Ruiz (2014), which calculates
the start and completion times of the jobs in the order in
which they appear in a given permutation, with the makespan
being equal to the completion of the job in the last position.
The procedure runs in @ (nm) time and implies that M (c, X)
always admits a feasible solution for a given X € X. This,
in turn, means that D(«, B, y, x) is always feasible for a
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given £ € X, and for an optimal solution (&, 8, ) of the
dual problem, one obtains the following Benders optimality
cuts:

n n n
7> Zijjl + ZZBjkxjk,
j=1

j=1k=2

where z is a lower bound on the optima} solution value of
M(c,x), Aj = Yy axpij + Y imp Bitpij and Bj =
S, Bupij + Y0, ik pij. Using this result, we are now
ready to present the following reformulation of M(c, x),
referred to as the master problem, constructed using the set
Pp of extreme points of the polytope defined by the dual
problem D(«, B, v, X), and shown as MP(Pp) below:

Minimize z (23)
subject to
n
ijkzl j=1,...,n
k=1
(24)
n
ijk =1 k=1, n
Jj=1
(25)
n n n
2= Ajxji+ )Y Bixjk (@, B,v) € Pp
j=1 j=lk=2
(26)
xjr € {0, 1} j k=1, ,n,

As the MP includes a large number of optimality cuts, it
can be solved using a cutting plane algorithm in practice,
normally starting with MP(&) with no optimality cuts (26),
and generating the cuts on an as-needed basis. The algorithm
stops after solving a certain MP(P), where P C Pp.

To help speed up the convergence of the algorithm, we
also use the following combinatorial Benders cuts using any
solution ¥ € X in the master problem:

Z Xjp<n-—2, (27)

(j,k):)?jk=l

which can be used to cut solution x off from the set of fea-
sible solutions to M (c, x). In particular, after the addition
of constraint (27), any solution obtained by the formulation
will differ from solution X with respect to the position of at
least two jobs. This follows from the fact that changing the
position of one job in a given sequence implicitly requires
the change of position of another job in the sequence.

@ Springer

3.2 Referenced local search algorithm

Another ingredient of our algorithm is a referenced local
search (RLS), proposed by Pan et al. (2008), which is ini-
tialized with a seed permutation 7" obtained by a good
constructive heuristic. In this paper, the reference permu-
tation 7" is taken from the master problem solution. Let
Cax (7r) denote the makespan of permutation . The RLS
procedure first finds the referenced job, which is determined
by using the index i in the RLS procedure, in the current
permutation . The referenced job is removed from 7 and
inserted into all possible positions of w. If this operation
results in a permutation 7 * with a lower Cpax (77*) as com-
pared to Cpax (1), then the current permutation is replaced
with 7* and the value of the counter controlling the num-
ber of runs in RLS is set to 1. Otherwise, the value of the
counter is increased by one. This procedure is repeated until
the value of the counter reaches the number of jobs in the
problem. RLS keeps a list S with the best solutions found.
The pseudocode of RLS is given in Algorithm 1. Note that the
accelerated makespan calculations and speedups proposed in
Pan and Ruiz (2014) are employed in the proposed RLS local
search.

Algorithm 1 RLS(rr"¢/)

1: i < 1;counter < 0, 7w < 7" | § « g’ef
2: while (counter < n) do _

3:  Locate and extract job n(r;‘;f from

4:  Insert job n(f‘f in all possible positions of 7 and let 7* be the
permutation resulting in the best Cpax

5:  if (Chax (™) < Cmax (7)) then

6: 7w < w*; counter < 1; update set S of best solutions
7. else

8: counter < counter + 1

9:  endif

10: i < mod(i+1,n)
11: end while
12: return 7, S

3.3 Cut generation using referenced local search

The choice of various ingredients used within a Ben-
ders decomposition can have a significant effect on the
performance of the algorithm. These range from model
selection (Magnanti and Wong 1981), cut improvement
(e.g., Papadakos 2008; Saharidis and Ierapetritou 2013) and
strengthening the master problem, through the addition of
pre-generated valid inequalities (e.g., Cordeau et al. 2006).
However, the choice of the integer solutions obtained from
the master problem and the improvement thereof has received
much less attention. In particular, the question around the
effect of the quality of a feasible solution and the strength
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of the corresponding cut subsequently added to the master
problem on the convergence of the Benders decomposition
algorithm has not yet been fully investigated. Costa et al.
(2012), for example, suggest the use of intermediate solu-
tions within Benders decomposition, obtained either during
the course of the branch-and-cut algorithm or through local
search, and report encouraging results for the fixed-charge
network design problem. In this paper, we seek to explore
this question further and propose a Benders decomposition
algorithm that embeds the bespoke RLS into the algorithm
for solving the MNPFSP. The aim is to enhance the perfor-
mance of the algorithm by generating extra cuts within the
algorithm induced by the heuristic solutions. This section
explains the details of the algorithm and describes and tests
various strategies for an effective implementation.

The enhanced Benders decomposition is an iterative algo-
rithm that generates optimality cuts (26) at each iteration
on the basis of an optimal MP solution x* and uses x* as
an input to the RLS to generate a user-defined number o
of neighbor solutions, each of which induces an additional
optimality cut inserted into the master problem. The reason
behind the choice of the RLS, instead of other heuristics
and metaheuristics for the problem, is the simplicity of its
implementation and the lack of any special input parame-
ters. The RLS has been shown to work effectively for solving
the PFSP (Pan et al. 2008), the NPFSP (Deng and Gu 2012)
and the MNPFSP (Pan and Ruiz 2014). We propose three
different strategies for generating the additional cuts, which
are described below. Let S = {x1, x2, ..., x|5/} be the set of
solutions generated by RLS, and let v(x) denote the objective
function value of a feasible solution x.

— Elite: Choose the first o solutions in S such that v(x;) >
v(x2) = - > v(xe) = v(x).

— Highly elite: Choose the best o solutions in § in terms
of the objective value.

— Random: Choose o solutions in S at random.

The pseudocode of the proposed algorithm is given in
Algorithm 2.

4 Computational results

This section presents a computational study to assess the
performance of the Benders decomposition algorithm pro-
posed in this paper. The algorithm and its variants are coded
in Visual C++, using CPLEX 12.7.1 as the solver. We used
an Intel Core i5-2450M computer with a 2.5 GHz CPU and
4 GB of memory. The tests were conducted on two sets of
instances available at http://soa.iti.es/rruiz that were origi-
nally proposed in Ruiz et al. (2009) and extended in Pan and

Algorithm 2 Benders decomposition

Input: number o of cuts to add at each iteration, cut generation strategy,

allowable optimality gap € > 0

1: Set LB < —00,UB < 400, P < @

2: while LB <UB — ¢ do

3:  Let xo denote the solution of MP(P).

if (LB < v(xp)) then

Set LB < v(xq)

end if

Let V <« xo

Let S be the set of all neighbor solutions of x¢ obtained by the

RLS.

9: Let V <« x; where x; is one of the i = 1,2, ..., o solutions
obtained according to the cut generation strategy used (elite,
highly elite or random)

10:  for each solution x; € V do

A

11: Solve D(«, B, y, x;) and let («, B, y)i denote the resulting
solution

12: P < (a,B,y)

13: if (v(x;) < UB) then

14: Set UB <« v(x;)

15: Set x* <« x;

16: end if

17: Generate a combinatorial cut using solution xp and add to
MP(P).

18:  end for

19: end while
Output: Best solution x* and value v(x*)

Ruiz (2014). The experiments were conducted in four sets,
which will be explained below along with the results.

4.1 Performance of standard Benders
decomposition implementations

In the first stage, we first compare our (deliberately) naive
implementation of Benders decomposition (shown by BD)
described in Sect. 3.1, the branch-and-cut algorithm of
CPLEX 12.7.1 (shown by CPLEX) to solve the formula-
tion of the problem shown in Sect. 2 and the automated
Benders decomposition available within the software (shown
by ABD). The aim is to show the performance of standard
Benders decomposition implementations on the MNPFSP.
For this purpose, we generate relatively small-size instances
from the instance I_3_500_50_1 with 500 jobs and 50
machines available at the above website. A smaller instance
with ten jobs and three machines, for example, is gener-
ated by using the first ten jobs and three machines within
the larger instance. A total of 27 small-scale instances are
formed withn € {10, 15, 20, 25, 30, 35, 40, 45, 50} jobs and
m € {3, 6,9} machines. A computational time limit of 7200
CPU seconds was imposed on the total run time of each algo-
rithm. The results are given in Table 1, where the first three
columns show the instance number as the identifier, number
n of jobs and number m of machines. Then, for each of the
three methods compared, we provide the value of the best
integer solution (BI) identified within the time limit, the final
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Table 1 Computational results

for the small instances No. - m  CPLEX ABD BD
BI ST GAP BI ST GAP NI BI ST GAP NI
1 10 3 526  0.03 0.00 526 0.17 0.00 1 526 0.25 0.00 8
2 10 6 886  0.06 0.00 886 0.34 0.00 19 886 3.08 0.00 39
3 10 9 1210 0.30 0.00 1210 1.53  0.00 85 1210 265.24 0.00 164
4 15 3 820 0.03 0.00 820 0.19 0.00 1 820 0.10 0.00 4
5 15 6 1181 0.30 0.00 1181 3.11 0.00 65 1181 137.69 0.00 239
6 15 9 1514 0.32 0.00 1514 16.70 0.00 304 1525 7200.00 2.36 268
7 20 3 1166 0.05 0.00 1166 0.27 0.00 1 1166 0.12 0.00 4
8 20 6 1717  0.19 0.00 1717 0.28 0.00 4 1717 5.01 0.00 48
9 20 9 2122 027 0.00 2122 0.58 0.00 34 2122 2.87 000 35
10 25 3 1447 0.08 0.00 1447 0.22  0.00 3 1447 0.10  0.00 3
11 25 6 2134 028 0.00 2134 0.58 0.00 21 2134 324 0.00 24
12 25 9 2638 031 0.00 2638 1.97 0.00 26 2638 3349 0.00 114
13 30 3 1748 0.12 0.00 1748 0.55 0.00 1 1748 1.00 0.00 11
14 30 6 2511 023 0.00 2511 0.70  0.00 4 2511 747 000 10
15 30 9 2904 036 0.00 2904 2.94 0.00 45 2904 1145.57  0.00 477
16 35 3 1933 025 0.00 1933 0.17 0.00 1 1933 1.07  0.00 11
17 35 6 2685 1.17 0.00 2685 4.28 0.00 45 2685 162.37  0.00 186
18 35 9 3047 1.63 0.00 3047 1.75 0.00 12 3047 3198.76  0.00 569
19 40 3 2161 0.27 0.00 2161 0.28 0.00 4 2161 1.16 0.00 7
20 40 6 2980 0.64 0.00 2980 1.20 0.00 12 2980 698.17  0.00 41
21 40 9 3256 1149 0.00 3256 1598 0.00 106 3426 7200.00 24.93 13
22 45 3 2500 0.28 0.00 2500 0.25 0.00 2 2500 1.11 0.00 7
23 45 6 3309 2.80 0.00 3309 1.64 0.00 45 3309 33.82 0.00 66
24 45 9 3660 8.92 0.00 3660 9.38 0.00 61 3717 7200.00 15.93 15
25 50 3 2730 044 0.00 2730 0.97 0.00 3 2730 3.27 0.00 7
26 50 6 3642 225 0.00 3642 2.61 0.00 37 3642 744.45 0.00 15
27 50 9 4011 491 0.00 4011 11.84 0.00 54 4133  7200.00 24.86 10

optimality gap (GAP), in percent, the overall solution time
(ST), in seconds, and the total number of iterations (NI) for
ABD and BD.

As can be seen from Table 1, BD was able to solve 23
out of 27 instances to optimality, while CPLEX and ABD
are able to solve all of the instances to optimality within the
given time limit. In terms of the time to solve to optimality,
CPLEX is the fastest in all instances except for instances 16,
22 and 23, for which ABD shows a better performance. BD
is quicker than the other two for instances 4, 7 and 10. These
results suggest that a standard implementation of Benders
decomposition without any enhancements is highly ineffec-
tive and does not seem to provide encouraging results for the
MNPEFSP.

4.2 Effectiveness of the cut generation strategies

The second stage of the experiments numerically evaluates
the cut generation strategies, and the effect of the number of
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additional cuts o added at each iteration of the algorithm. We
denote by 6’ = o + 1 the total number of cuts added at each
iteration, where the ‘+ 1’ indicates the original optimality
cut from the solution of the master problem, and test o’ €
{2, 5,10, 25, 50} in the experiments, resulting in a total of
15 combinations applied to the 27 instances described above.
A computational time limit of 7200 CPU seconds also was
imposed.

The results of the experiments are reported in Tables 2
and 3 for the elite and the highly elite strategies, respectively,
denoted by the notation Eo’ and HEo’ which also indicates
the number of additional optimality cuts introduced. We do
not report the results associated with the random strategy,
as it consistently produced very poor quality solutions in all
cases.

The findings indicate that the elite strategy has found the
optimum solutions for all instances with all settings of o',
with the exception of instances 24 and 27 for E2, instances
18, 24,26 and 27 for ES and instances 18, 23 and 26 for E10.
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Z??}ﬁingosﬁg;?;onal results  No.  o/=2 o' =5 o' =10 o' =25 o' =50

ST NI ST NI ST NI ST NI ST NI

1 0.28 6 0.46 11 0.67 3 0.56 3 0.26

2 1.75 20 1.76 12 2.96 11 1.14 6 0.91
3 132.94 97 120.41 68 152.09 65 98.99 61 96.17 61
4 0.12 3 0.38 3 0.8 3 0.28 2 0.37 2
5 182.4 123 61.2 57 34.42 33 36.66 35 8.77 18
6 815.26 115 624.12 85 517.62 63 484.12 54 452.19 45
7 0.16 3 0.08 2 1.19 2 0.1 2 0.18 2
8 0.54 6 0.62 5 1.7 4 0.54 2 0.49 2
9 1.21 12 3.01 15 2.33 6 0.67 2 0.65 2
10 0.65 6 0.35 3 0.87 3 0.37 2 0.29 2
11 1.08 7 0.81 4 1.09 2 0.9 2 0.84 2
12 74.43 65 24.24 38 10.59 17 2.87 6 2.75 6
13 0.74 7 0.37 3 1.14 3 0.75 2 0.67 2
14 7.17 11 0.51 3 1.41 3 1.42 3 1.22 2
15 476.86 116 442.93 132 46.19 28 8.64 9 8.26 8
16 1.49 10 1.59 7 1.33 3 0.84 2 0.72 2
17 430.9 86 870.89 31 310.29 9 7.95 9 2.28 3
18 3342.12 227 7200 8 7200 5 3.64 4 2.83 3
19 2.12 13 1.59 6 0.91 3 1.29 3 1.47 2
20 2549.29 12 235.16 59 782.15 7 2.7 3 1.99 2
21 450.32 232 362.45 172 278.31 100 251.76 64 212.76 38
22 1.55 8 0.45 3 1.68 3 1.11 2 1.04 2
23 158.22 92 3240.12 63 7200 5 178.76 4 1.65 2
24 7200 7 7200 202 3225.52 91 94.47 16 11.41 5
25 3.61 15 1.52 5 2.37 4 1.01 2 1.02 2
26 2513.16 22 7200 4 7200 3 5.96 4 2.32 2
27 7200 7 7200 5 1488.01 74 126.91 18 3.45 2

The highly elite strategy, on the other hand, has found all the
optimum solutions for all values of ¢’, as can be seen from
Table 3. Furthermore, the variant HE2 solves 19 (out of 27)
instances to optimality quicker than the other two cut gener-
ation strategies. Comparing HE2 with the results of CPLEX
and ABD reported in Table 1, we observe that it yields the
best performance on 11 out of the 27 instances and is able to
solve instances to optimality for which BD has failed to do
so within the time limit.

4.3 Results on larger-scale instances

The third and last phase of the computational study compares
the algorithms on medium- and large-scale instances. The
former set includes a further 30 instances, generated in the
same manner as the small-size instances by choosing n to
range from 50 to 500 in increments of 50, and m as either 5,
10 and 15 from within the main instance I_3_500_50_1.

Having established the superiority of HE2 over other vari-
ants of the Benders decomposition algorithm in the previous
section, we now employ two further enhancements to this
algorithm. The first is the addition of combinatorial cuts (27)
within the algorithm, shown by HE2, and the second is a
further strengthening of the optimality cuts using the Pareto-
optimal cut generation scheme described by Magnanti and
Wong (1981), indicated by HE2 + PO. These two variants
have also been tested by deactivating the combinatorial cuts,
indicated using the same names but with the suffix ‘-CC.’
It should be noted with the addition of cardinality cuts, the
optimality gaps are no longer valid, reasons for which we do
not report here. The tests comparing the four variants have
been conducted on a limited set of instances with n chosen as
either 50, 100 or 150, and m equal to 5, 10 or 15. The results
are reported in Table 4.

The results in Table 4 show that the variants of the algo-
rithm, namely HE2 and HE2 + PO that use combinatorial

@ Springer



520

Journal of Scheduling (2020) 23:513-523

Table 3 Computational results

of the highly elite strategy No. o'=2 o'=5 o' =10 0'=25 o' =30
ST NI ST NI ST NI ST NI ST NI
1 0.29 7 0.93 6 0.32 2 0.96 2 1.34 2
2 3.05 35 4.24 22 2.11 10 2.63 6 1.51 2
3 197.89 135 171.32 85 100.09 44 56.61 23 33.2 15
4 0.06 2 0.13 2 0.22 2 0.74 2 1.24 2
5 92.6 121 181.41 61 20.7 29 18.76 14 23.66 11
6 216.13 120 245.23 90 317.12 75 314.96 66 410 44
7 0.15 2 0.15 2 0.32 2 0.87 2 1.97 2
8 0.09 2 0.33 2 0.49 2 1.08 2 2.45 2
9 0.14 2 0.25 2 0.49 2 1.19 2 2.55 2
10 0.11 2 0.22 2 0.42 2 0.99 2 1.89 2
11 0.55 5 0.31 2 0.52 2 1.36 2 2.32 2
12 1.14 11 11.22 31 2.18 6 5.03 6 8.15 5
13 0.15 2 0.46 2 0.43 2 1.17 2 2.11 2
14 0.15 2 0.33 2 0.65 2 1.31 2 2.31 2
15 1.65 11 1.8 7 12.5 18 2.48 3 2.85 2
16 0.11 2 0.3 2 0.58 2 0.87 2 1.81 2
17 0.71 4 1.51 6 7.7 12 3.67 4 2.61 2
18 2.48 13 1.38 5 5.71 10 1.05 2 5 3
19 0.32 2 0.37 2 0.64 2 1.36 2 2.49 2
20 0.14 2 0.64 2 0.86 2 1.55 2 2.63 2
21 130.25 109 162.56 86 178.12 63 250.56 51 312.76 38
22 0.23 2 0.4 2 0.66 2 1.28 2 2.33 2
23 0.21 2 0.83 2 0.79 2 2.08 2 2.86 2
24 15.59 32 27.32 24 9.29 10 5.95 4 160.62 13
25 0.21 2 0.44 2 0.86 2 1.46 2 2.47 2
26 0.2 2 0.66 2 1.08 2 1.8 2 3.44 2
27 0.3 2 0.64 2 1.07 2 2.55 2 3.52 2
Table 4 Testing variants of HE2
No. n m HE2 HE2-CC HE2 + PO-CC HE2 + PO
BI ST NI BI ST GAP NI BI ST GAP NI BI ST NI
28 50 5 3083  0.32 2 3083 1.84 0 2 3083 2.86 0 2 3083 1.07 2
29 50 10 4050 1.01 2 4050 2.11 0 6 4050 9.04 0 4 4050 3.25 4
30 50 15 5053  1917.41 209 5053 7200 0.28 226 5053 7200 0.14 272 5053  307.09 210
31 100 5 5630 1.09 2 5630 1.47 0 2 5630 3.24 0 2 5630  6.97 2
32 100 10 6855 1186.13 128 6855 119439 0 128 6855 1187.89 0 128 6855  611.90 43
33 100 15 7933 7200 66 7956 7200 1.02 67 7963 7200 1.05 66 7933 7200 68
34 150 5 8335 2.34 2 8335 3.01 0 2 8335 7.13 0 2 8335  6.09 2
35 150 10 9502  56.62 8 9502 28443 0 18 9502 814.86 0 23 9502 1918.77 33
36 150 15 10,626 7200 14 10,649 7200 3.04 19 10,635 7200 1.65 26 10,621 7200 26

Bold values indicate the smallest solution time

cuts, always result in a superior performance over the cases
where they are not used. However, a performance compari-
son between HE2 and HE2 + PO is not conclusive and seems
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to be instance-dependent. In particular, while HE2 is faster
for instances 28, 29, 31, 34 and 35, instances 30 and 32 are
solved significantly faster with HE2 + PO.
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Table 5 Comparisons on larger-scale instances

n m CPLEX ABD HE2 HE2 + PO

BI ST GAP BI ST GAP NI BI ST NI BI ST NI

50 5 3083 1.47 0 3083 1.83 0 17 3083 0.32 2 3083 1.07 2
50 10 4050 13.09 0 4050  21.14 0 94 4050 1.01 2 4050 3.25 4
50 15 5053 259.91 0 5053 762.8 0 550 5053 1917.41 209 5053 307.09 210
100 5 5630 3.34 0 5630 592 0 18 5630 1.09 2 5630 6.97 2
100 10 6987 7200 1.98 6855 4384.63 0 359 6855 1186.13 128 6855 611.90 43
100 15 8175 7200 3.56 8357 7200 6.01 225 7933 7200 66 7933 7200 68
150 5 8335 24.48 0 8335 20.16 0 21 8335 2.34 2 8335 6.09 2
150 10 9641 7200 1.46 9837 7200 3.51 66 9502  56.62 9502 1918.77 33
150 15 11,077 7200 527 11,556 7200 1093 42 10,626 7200 14 10,621 7200 26
200 5 11,121 86.23 0 11,121 24.33 0 15 11,121 4.5 2 11,121 8.87 2
200 10 13,096 7200 1.07 13,453 7200 44 35 12,980 7200 25 12,978 7200 40
200 15 14,322 7200 4.04 17,055 7200 - - 13,796 7200 27 13,837 7200 20
250 5 13,357 239.06 0 13,357 56.67 0 15 13,357 9.57 2 13,357 16.86 2
250 10 15,567 7200 1.34 17,619 7200 - - 15,376 7200 32 15,373 7200 36
250 15 20,366 7200 100 20,366 7200 - - 16,285 7200 14 16,310 7200 19
300 5 15,160 7200 038 15,162 7200 0.4 38 15,102 14.23 2 15,102 22.55 2
300 10 17,451 7200 1.58 20,128 7200 - - 17,185 7200 21 17,185 7200 25
300 15 19,053 7200 326 22,779 7200 - - 18,540 7200 13 18,556 7200 13
350 5 18,329 153628 0 18,329 121645 0 55 18,329  23.13 2 18,329 4981 2
350 10 21,299 7200 1.24 23,394 7200 - - 21,044  4618.28 20 21,044  3578.19 23
350 15 26,428 7200 100 26,428 7200 - - 22,301 7200 15 22,294 7200 13
400 5 21,094 169733 0 21,094 174.42 0 17 21,094 305 2 21,094 49.96 2
400 10 23,967 7200 1.82 26,042 7200 - - 23,542 7200 18 23,541 632.66 27
400 15 26,372 7200 6.61 29,034 7200 - - 24,676 7200 17 24,695 7200 10
450 5 23,682 288128 0 23,682 361.59 0 13 23,682  40.06 2 23,682 62.56 2
450 10 29,314 7200 100 29,314 7200 - - 26,445 7200 16 26,445 2963.05 14
450 15 32,151 7200 100 32,151 7200 - - 27,499 7200 14 27,430 7200 17
500 5 25,401 7200 094 25,218 7200 0.23 80 25,161 325.69 8 25,161 1138.62 12
500 10 32,018 7200 100 32,018 7200 - - 27,426 7200 21 27,426 7200 24
500 15 34,792 7200 100 34,792 7200 - - 28,504 7200 9 28,336  3437.65 15

Bold values indicate the smallest solution time

To further compare HE2 and HE2 + PO along with the
CPLEX solver and the ABD, we provide further results on
instances with up to 500 jobs in Table 5. These results are
indicative of the superior performance of the two variants of
the algorithm over CPLEX and ABD, in terms of both the
computational solution time and solution quality. In particu-
lar, with the exception of one instance, one of the two variants
always yields the best performance. More remarkably, while
neither CPLEX nor ABD was able to identify a feasible solu-
tion for instances (n = 150, m = 10), (n = 300, m = 5),
(n = 350, m = 10), (n = 500, m = 5) and (n = 500,
m = 5) within the allowed time limit, at least one of HE2 or
HE2 + PO solved these instances to optimality.

4.4 Comparison with a state-of-the-art heuristic

The last set of experiments reported in this section are con-
ducted to compare the algorithms we propose in this paper
with a state-of-the-art heuristic described for the problem,
namely the iterated greedy algorithm (IGA) of Pan and Ruiz
(2014), in terms of the value of the solutions identified. These
tests use the same set of instances shown in Table 5. In their
study, Pan and Ruiz (2014) run the IGA under a time limit of
n x (m/2) x p milliseconds, where p € {10, 20, 30, 60, 90}.
In our experiments, we run the IGA five times, using the
largest value for p = 90 in setting the time limit for each
of the five runs. The results are shown in Table 6, where the
column titled BI corresponds to the best value found for the
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Table 6 Comparisons with a

state-of-the-art heuristic " Bl Method IGA IGA
Min. Max. Avg. Std. (7200 s)
50 5 3083 All 3083 3083 3083 0 3083
50 10 4050 All 4050 4050 4050 0 4050
50 15 5053 All 5053 5100 5062.4 21.01 5053
100 5 5630 All 5630 5630 5630 0 5630
100 10 6855 ABD/HE2/HE2 + PO 6855 6883 6867.8 10.03 6855
100 15 7933 HE2/HE2 + PO 7935 7975 7956.8 14.46 7933
150 5 8335 All 8335 8335 8335 0 8335
150 10 9502 HE2/HE2 + PO 9502 9549 9511.4 21.01 9502
150 15 10,621 HE2 + PO 10,636 10,675 10,648.4 17.89 10,617
200 5 11,121 All 11,121 11,121 11,121 0 11,121
200 10 12,978 HE2 + PO 12,978 13,002 12,995.6 10.11 12,978
200 15 13,796 HE2 13,796 13,857 13,819 26.76 13,795
250 5 13,357 All 13,357 13,357 13,357 0 13,357
250 10 15,373 HE2 + PO 15,376 15,407 15,392 12.7 15,360
250 15 16,285 HE2 16,286 16,362 16,325.8 29.98 16,285
300 5 15,102 HE2/HE2 + PO 15,120 15,141 15,130.6 7.43 15,102
300 10 17,185 HE2/HE2 + PO 17,185 17,225 17,199 16.37 17,188
300 15 18,540 HE2 18,562 18,589 18,578.2 14.78 18,481
350 5 18,329 All 18,329 18,329 18,329 0 18,329
350 10 21,044 HE2/HE2 + PO 21,050 21,066 21,057.6 6.34 21,044
350 15 22,294 HE2 + PO 22,299 22,313 22,305.4 6.8 22,303
400 5 21,094 All 21,094 21,094 21,094 0 21,094
400 10 23,541 HE2 + PO 23,561 23,580 23,567 7.48 23,542
400 15 24,676 HE2 24,687 24,776 24,718.2 38.04 24,714
450 5 23,682 All 23,682 23,682 23,682 0 23,682
450 10 26,445 HE2/HE2 + PO 26,446 26,451 26,448 2.73 26,446
450 15 27,430 HE2 + PO 27,594 27,644 27,610.4 2238 27,596
500 5 25,161 HE2/HE2 + PO 25,161 25,193 25,171 12.81 25,161
500 10 27,426 HE2/HE2 + PO 27,428 27,443 27,436.8 5.44 27,443
500 15 28,336 HE2 + PO 28,446 28,496 28,466 27.38 28,446

Bold values indicate the best solution value

corresponding instance, and the column titled Method indi-
cates which of the four algorithms of Table 5 was able to
identify the best value. Columns five to seven report the min-
imum, maximum and the average solution values for each
instance, respectively, across the five runs of the IGA, and
the standard deviation. For reasons of fairness, we also run
the IGA once for each instance, under the same time limit of
7200 s used for the exact algorithms, and report the value of
the best solution identified in the last column of the table.
As the results in Table 6 indicate, the exact algorithms
proposed in this paper, in particular HE2 and HE2 + PO, are
highly competitive with the IGA for instances with n < 250,
and are able to identify the same solution values in most
cases. However, the exact algorithms often yield better qual-
ity solutions for larger instances in comparison, irrespective
of whether the IGA is run under a 7200 second time limit or
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shorter. In particular, for instances with (n = 350, m = 15),
(n = 400,m = 10), (n = 400, m = 15), (n = 450,m = 10),
(n = 450, m = 15), (n = 500, m = 10) and (n = 500,
m = 15), the exact algorithms yield better quality solutions
under the same time limit.

5 Conclusions and future research

This paper presented an enhancement to the traditional
Benders decomposition by generating cuts using a local
search algorithm for the mixed no-idle permutation flow-
shop scheduling problem. The latter algorithm was used as
an ‘oracle’ to generate high-quality solutions, which in turn
were used to construct additional cuts used within the iter-
ative algorithm. Our findings indicate that such a strategy
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can substantially improve the performance of the algorithm,
even with only a single additional cut added at each iter-
ation, and that the quality of the solution used to generate
the additional cut is of paramount importance. In particu-
lar, it is only high-quality solutions that help to improve the
convergence; randomly generated solutions worsen the effi-
ciency of the algorithm. Our algorithm also makes use of
combinatorial cuts that eliminate feasible solutions from the
search space, which leads to the solution of instances of up
to 500 jobs and five machines that otherwise are not solved
with a commercial solver. The results encourage the use of
such a strategy on other types of problems, assuming that an
‘oracle’ is available to generate high-quality solutions within
short computational times.
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