
Machine Learning

Chapter 8

Optimization

Saeed Ebadollahi

Optimization, Machine Learning Spring 2023 1

Spring 2023 2

Outline

8.1 Introduction
 Local vs global optimization

 Constrained vs unconstrained optimization

 Convex vs nonconvex optimization

 Smooth vs non smooth optimization

8.2 First-order methods
 Descent direction

 Step size (learning rate)

 Convergence rates

 Momentum methods

Optimization, Machine Learning

8.3 Second-order methods
• Newton’s method
• BFGS and other quasi-Newton

methods
• Trust region methods

8.4 Stochastic gradient descent
• Application to finite sum problems
• Example: SGD for fitting linear

regression
• Choosing the step size (learning rate)
• Iterate averaging
• Variance reduction
• Preconditioned SGD

3Spring 2023Optimization, Machine Learning

8.1 Introduction

The core problem in machine learning parameter estimation
• This requires solving an optimization problem, where we try to find the values for a

set of variables θ ∈ Θ, that minimize a scalar-valued loss function or cost function
ℒ ∶ Θ → ℝ:

θ∗ ∈ argmin
θ∈Θ

ℒ(θ)

• Parameter space is given by Θ ⊆ ℝ𝐷, (D is the number of variables being optimized
over)

minimize 𝓛 𝜃 = −𝑅 𝜃 ≡ maximize a score function or reward function 𝑅 𝜃

✓ objective function: a function we want to maximize or minimize.
✓ Solver: An algorithm that can find an optimum of an objective function.

focusing on continuous optimization, rather than discrete optimization.

4Spring 2023Optimization, Machine Learning

8.1 Introduction

global optimum: A point that satisfies Equation θ∗ ∈ argmin
θ∈Θ

ℒ(θ)

global optimization: Finding such a point satisfies above Equation

local minimum:
∃𝛿 > 0, ∀𝜃 ∈ Θ 𝑠. 𝑡. 𝜃 − θ∗ < 𝛿, ℒ(θ∗) ≤ ℒ(𝜃)

strict local minimum:
∃𝛿 > 0, ∀𝜃 ∈ Θ 𝑠. 𝑡. 𝜃 − θ∗ < 𝛿, ℒ θ∗ < ℒ(𝜃)

saddle point: a point where some directions point downhill, and some uphill. More
precisely, at a saddle point, the eigenvalues of the Hessian will be both positive and
negative.

Local vs global optimization

5Spring 2023Optimization, Machine Learning

8.1 Introduction

flat local minimum: A local minimum surrounded by other local minima with the
same objective value.
globally convergent: if an algorithm is guaranteed to converge to a stationary point
from any starting point.

Local vs global optimization

6Spring 2023Optimization, Machine Learning

8.1 Introduction

Consider a point θ∗ ∈ ℝ𝐷, and let 𝑔∗ = ∇ℒ(𝜃)|θ∗ ,(𝑔 𝜃 = ∇ℒ(𝜃)) be the gradient at
that point, and 𝐻∗= ∇2ℒ(𝜃)|θ∗ , (𝐻 𝜃 = ∇2ℒ(𝜃)) be the corresponding Hessian.

Conditions characterize every local minimum:
• Necessary condition: If 𝜽∗ is a local minimum, then we must have 𝒈∗ = 0 (i.e., 𝜽∗

must be a stationary point), and 𝑯∗ must be positive semi-definite.

• In optimization, a stationary point is a point where the gradient of the objective
function is zero.

• Sufficient condition: If 𝒈∗ = 0 and 𝑯∗ is positive definite, then θ∗ is a local minimum.

Question: Why a zero gradient is not sufficient?

✓ note that the stationary point could be a local minimum, maximum or saddle point
✓ If the Hessian at a point is positive semi-definite, then some directions may point

uphill, while others are flat.
✓ if the Hessian is strictly positive definite, then we are at the bottom of a “bowl”, and

all directions point uphill.

Optimality conditions for local vs global optima

7Spring 2023Optimization, Machine Learning

8.1 Introduction

partition the set
of constraints 𝓒

Constrained vs unconstrained optimization

inequality constraints: 𝑔𝑗 𝜃 ≤ 0 𝑓𝑜𝑟 𝑗 ∈ 𝐼

Example: 𝑔𝑖 𝜃 = −𝜃𝑖 ≤ 0

equality constraints: ℎ𝑘 𝜃 = 0 𝑓𝑜𝑟 𝑘 ∈ ℇ

Example: ℎ 𝜃 = (1 − σ𝑖=1
𝐷 𝜃𝑖) =0

We define the feasible set as the subset of the parameter space that satisfies the
constraints:

𝒞 = {𝜃: 𝑔𝑖 𝜃 ≤ 0: 𝑗 ∈ 𝐼, ℎ𝑘 𝜃 = 0 𝑓𝑜𝑟 𝑘 ∈ ℇ} ⊆ ℝ𝐷

Our constrained optimization problem now becomes

θ∗ ∈ argmin
θ∈𝒞

ℒ(θ)

If 𝒞 = ℝ𝐷, it is called unconstrained optimization.

8Spring 2023Optimization, Machine Learning

8.1 Introduction
Constrained vs unconstrained optimization

feasibility problem: The task of finding any point (regardless of its cost) in the feasible
set.

common strategy for solving constrained problems:

1. Create penalty terms that measure how much we violate each constraint.
2. Add these terms to the objective and solve an unconstrained optimization

problem.
The 𝐋𝐚𝐠𝐫𝐚𝐧𝐠𝐢𝐚𝐧 is a special case of such a combined objective.

9Spring 2023Optimization, Machine Learning

8.1 Introduction

In convex optimization, we require the objective to be a convex function defined over
a convex set. In such problems, every local minimum is also a global minimum.
• Convex sets
We say 𝑆 is a convex set if, for any 𝒙, 𝒙′ ∈ 𝑆, we have

𝜆𝑥 + 1 − 𝜆 𝑥′ ∈ 𝑆, ∀𝜆 ∈ [0, 1]

That is, if we draw a line from 𝒙 to 𝒙′, all points on the line lie inside the set.

Convex vs nonconvex optimization

10Spring 2023Optimization, Machine Learning

8.1 Introduction

• Convex functions
We say 𝑓 is a convex function if its epigraph defines a convex set. Equivalently, a
function 𝑓(𝑥) is called convex if it is defined on a convex set and if, for any 𝒙, 𝒚 ∈ 𝑺,
and for any 0 ≤ 𝜆 ≤ 1, we have

𝑓 𝜆𝑥 + 1 − 𝜆 𝑦 ≤ 𝜆𝑓 𝑥 + 1 − 𝜆 𝑓 𝑦

Convex vs nonconvex optimization

11Spring 2023

8.1 Introduction
Convex vs nonconvex optimization

A function is called strictly convex if the inequality is strict.

If −𝑓(𝑥) is convex 𝑓(𝑥) is concave

If −𝑓(𝑥) is strictly convex 𝑓(𝑥) is strictly concave

Optimization, Machine Learning

12Spring 2023

8.1 Introduction
Characterization of convex functions

Theorem 8.1.1. Suppose 𝑓:ℝ𝑛 → ℝ is twice differentiable over its domain. Then 𝑓 is
convex if 𝐻 = ∇2𝑓(𝑥) is positive semi definite for all 𝒙 ∈ 𝑑𝑜𝑚(𝑓). Furthermore, 𝑓 is
strictly convex if 𝑯 is positive definite.

Optimization, Machine Learning

This is convex if A is positive
semi definite, and is strictly
convex if A is positive definite.
It is neither convex nor concave
if A has eigenvalues of mixed
sign.

13Spring 2023

8.1 Introduction
Strongly convex functions

We say a function f is strongly convex with parameter m > 0 if the following holds for
all 𝒙, 𝒚 in f’s domain:

∇𝑓 𝑥 − ∇𝑓 𝑦
𝑇
𝑥 − 𝑦 ≥ 𝑚 𝑥 − 𝑦 2

2

A strongly convex function is also strictly convex, but not vice versa.
Differences between convex, strictly convex, and strongly convex:
(consider the case where f is twice continuously differentiable and the domain is the
real line.)
• f is convex if and only if 𝑓′′(𝑥) ≥ 0 for all 𝑥.
• f is strictly convex if 𝑓′′(𝑥) > 0 for all 𝑥 (note: this is sufficient, but not necessary).
• f is strongly convex if and only if 𝑓′′(𝑥) ≥ 𝑚 > 0 for all 𝑥.

Note that it can be shown that a function f is strongly convex with parameter 𝑚 if the
bellow function is convex.

𝐽(𝒙) = 𝑓(𝒙) −
𝑚

2
𝑥 2

Optimization, Machine Learning

14Spring 2023

8.1 Introduction
Smooth vs non smooth optimization

In smooth optimization, the objective and constraints are continuously differentiable
functions. For smooth functions, we can quantify the degree of smoothness using the
Lipschitz constant. In the 1d case, this is defined as any constant L ≥ 0 such that, for all
real x1 and x2, we have

𝑓(𝑥1) − 𝑓(𝑥2) ≤ 𝐿 𝑥1 − 𝑥2

Optimization, Machine Learning

15Spring 2023

8.1 Introduction
Smooth vs non smooth optimization

In non smooth optimization, there are at least some points where the gradient of the
objective function or the constraints is not well-defined.
composite objective:

ℒ 𝜃 = ℒ𝑠 𝜃 + ℒ𝑟(𝜃)

In machine learning applications, ℒ𝑠 is usually the training set loss, and ℒ𝑟 is a
regularizer, such as the ℓ1 norm of 𝜃.

smooth (differentiable) Non smooth (“rough”)

Optimization, Machine Learning

16Spring 2023

8.1 Introduction

for a convex function of several variables, 𝑓: ℝ𝑛 → ℝ, we say that 𝑔 ∈ ℝ𝑛 is a
𝐬𝐮𝐛𝐠𝐫𝐚𝐝𝐢𝐞𝐧𝐭 of 𝑓 at 𝒙 ∈ 𝑑𝑜𝑚(𝑓) if for all vectors 𝒛 ∈ 𝑑𝑜𝑚(𝑓),

𝑓 𝒛 ≥ 𝑓 𝒙 + 𝑔𝑇(𝒛 − 𝒙)

Note that a subgradient can exist even when f is not differentiable at a point.
A function f is called subdifferentiable at 𝒙 if there is at least one subgradient at 𝒙.
The set of such subgradients is called the subdifferential of f at 𝒙, and is denoted
𝜕𝑓 𝑥 .

Smooth vs non smooth optimization
• 𝐒𝐮𝐛𝐠𝐫𝐚𝐝𝐢𝐞𝐧𝐭𝐬

Optimization, Machine Learning

17Spring 2023

8.1 Introduction

Example: 𝑓 𝑥 = 𝑥 . Its subdifferential is given by

Smooth vs non smooth optimization
• 𝐒𝐮𝐛𝐠𝐫𝐚𝐝𝐢𝐞𝐧𝐭𝐬

𝜕𝑓 𝑥 = ቐ

{−1} 𝑖𝑓 𝑥 < 0
[−1, 1] 𝑖𝑓 𝑥 = 0

{+1} 𝑖𝑓 𝑥 > 0

Optimization, Machine Learning

18Spring 2023

8.2 First-order methods

In this section, we consider iterative optimization methods that leverage first order
derivatives of the objective function, i.e., they compute which directions point
“downhill”, but they ignore curvature information. All of these algorithms require that
the user specify a starting point 𝜽0. Then at each iteration t, they perform an update
of the following form:

𝜽𝑡+1 = 𝜽𝑡 + 𝜂𝑡 𝒅𝑡

where 𝜂𝑡 is known as the step size or learning rate, and 𝒅𝑡 is a descent direction, such
as the negative of the gradient, given by 𝒈𝑡 = 𝛁𝜃ℒ(𝜃)|𝜽𝑡. These update steps are

continued until the method reaches a stationary point, where the gradient is zero.

Optimization, Machine Learning

19Spring 2023

8.2 First-order methods

We say that a direction 𝒅 is a descent direction if there is a small enough (but
nonzero) amount 𝜂 we can move in direction 𝒅 and be guaranteed to decrease the
function value. Formally, we require that there exists an 𝜂𝑚𝑎𝑥 > 0 such that

ℒ(𝜃 + 𝜂𝑑) < ℒ(𝜃)

for all 0 < 𝜂 < 𝜂𝑚𝑎𝑥. The gradient at the current iterate,

𝑔𝑡 ≜ ∇ℒ 𝜃 |θt= ∇ℒ 𝜃𝑡 = 𝑔(𝜃𝑡)

points in the direction of maximal increase in f, so the negative gradient is a descent
direction. It can be shown that any direction 𝒅 is also a descent direction if the angle 𝜃
between 𝒅 and −𝒈𝒕 is less than 90 degrees and satisfies

𝑑𝑇𝑔𝑡 = 𝑑 𝑔𝑡 cos(𝜃) < 0
It seems that the best choice would be to pick 𝑑𝑡 = −𝑔𝑡. This is known as the
direction of steepest descent. However, this can be quite slow.

Descent direction

Optimization, Machine Learning

20Spring 2023

8.2 First-order methods

The simplest method is to use a constant step size, 𝜂𝑡 = 𝜂. However, if it is too large, the
method may fail to converge, and if it is too small, the method will converge but very slowly.
Example: consider the bellow convex function, (descent direction: 𝑑𝑡 = −𝑔𝑡)

ℒ 𝜃 = 0.5(𝜃1
2 − 𝜃2)

2+0.5(𝜃1 − 1)2

Constant step size

In machine learning, the sequence of step sizes {𝜂𝑡} is called the learning rate
schedule.

Step size (learning rate)

Optimization, Machine Learning

21Spring 2023

8.2 First-order methods

In some cases, we can derive a theoretical upper bound on the maximum step size we
can use.

Example: Consider a quadratic objective, ℒ 𝜽 =
1

2
𝜽𝑇𝐀𝜽 + 𝒃𝑇𝜽 + 𝑐 with 𝐀 ≽ 0. One

can show that steepest descent will have global convergence if the step size satisfies

𝜂 <
2

𝜆𝑚𝑎𝑥(𝐀)

More generally, setting 𝜂 < 2/𝐿, where L is the Lipschitz constant of the gradient,
ensures convergence.

Constant step size

the largest eigenvalue of A

Optimization, Machine Learning

22Spring 2023

8.2 First-order methods

The optimal step size can be found by finding the value that maximally decreases the
objective along the chosen direction by solving the 1d minimization problem

𝜂𝑡 = argmin
𝜂>0

𝜙𝑡 𝜂 = argmin
𝜂>0

ℒ(𝜃𝑡 + 𝜂𝑑𝑡)

This is known as line search, since we are searching along the line defined by 𝑑𝑡.
If the loss is convex, this subproblem is also convex, because 𝜙𝑡 𝜂 = ℒ(𝜃𝑡 + 𝜂𝑑𝑡) is a
convex function of an affine function of 𝜂, for fixed 𝜃𝑡 and 𝑑𝑡.

Example: consider the quadratic loss ℒ 𝜃 =
1

2
𝜃𝑇𝐴𝜃 + 𝑏𝑇𝜃 + 𝑐

Computing the derivative of φ gives
𝑑𝜙(𝜂)

𝑑𝜂
=

𝑑

𝑑𝜂

1

2
𝜃 + 𝜂𝑑 𝑇𝐴 𝜃 + 𝜂𝑑 + 𝑏𝑇 𝜃 + 𝜂𝑑 + 𝑐 = 𝑑𝑇𝐴 𝜃 + 𝜂𝑑 + 𝑑𝑇𝑏

= 𝑑𝑇 𝐴𝜃 + 𝑏 + 𝜂𝑑𝑇𝐴𝑑

Solving for
𝑑𝜙(𝜂)

𝑑𝜂
= 0 gives 𝜂 = −

𝑑𝑇 𝐴𝜃+𝑏

𝑑𝑇𝐴𝑑

Line search

Optimization, Machine Learning

exact line search: Using the optimal step size.

24Spring 2023

8.2 First-order methods
Convergence rates

For certain convex problems, with a gradient with bounded Lipschitz constant, one can
show that gradient descent converges at a linear rate. This means that there exists a
number 0 < 𝜇 < 1 such that

ℒ 𝜃𝑡+1 − ℒ(𝜃∗) ≤ 𝜇 ℒ 𝜃𝑡 − ℒ(𝜃∗)
rate of convergence: µ

• quadratic objective: ℒ 𝜃 =
1

2
𝜃𝑇𝐴𝜃 + 𝑏𝑇𝜃 + 𝑐 with 𝐴 ≻ 0.

Suppose we use steepest descent with exact line search. One can show that the
convergence rate is given by

𝜇 = (
𝜆𝑚𝑎𝑥 − 𝜆𝑚𝑖𝑛

𝜆𝑚𝑎𝑥 + 𝜆𝑚𝑖𝑛
)2

Rewrite:

µ = (
𝜅−1

𝜅+1
)2, (𝜅 =

𝜆𝑚𝑎𝑥

𝜆𝑚𝑖𝑛
: the condition number of A)

Intuitively, the condition number measures how “skewed” the space is, in the sense of
being far from a symmetrical “bowl”.

the smallest eigenvalue of Athe largest eigenvalue of A

Optimization, Machine Learning

25Spring 2023

8.2 First-order methods
Convergence rates

• non-quadratic functions:
The objective will often be locally quadratic around a local optimum. Hence the convergence
rate depends on the condition number of the Hessian, 𝜅(𝐻), at that point. We can often
improve the convergence speed by optimizing a surrogate objective (or model) at each step
which has a Hessian that is close to the Hessian of the objective function.

conjugate gradient descent: Overcome the inefficient zig-zag behavior of the path of steepest
descent with an exact line-search

𝐴 = 20, 5; 5, 2
𝑏 = [−14;−6]

𝑐 = 10
𝜅 𝐴 = 30.234

𝐴 = 20, 5; 5, 16
𝑏 = [−14;−6]

𝑐 = 10
𝜅 𝐴 = 1.8541

Optimization, Machine Learning

26Spring 2023

8.2 First-order methods
Momentum methods

Heavy ball (momentum method): Move faster along directions that were previously good, and
slow down along directions where the gradient has suddenly changed, just like a ball rolling
downhill.

We see that 𝑚𝑡 is like an exponentially weighted moving average of the past gradients

𝑚𝑡 = 𝛽𝑚𝑡−1 + 𝑔𝑡−1 = 𝛽2𝑚𝑡−2 + 𝛽𝑔𝑡−2 + 𝑔𝑡−1 = ⋯ =

𝜏=0

𝑡−1

𝛽𝜏𝑔𝑡−𝜏−1

If all the past gradients are a constant, say 𝒈, this simplifies to

𝑚𝑡 = 𝑔

𝜏=0

𝑡−1

𝛽𝜏

The scaling factor is a geometric series, whose infinite sum is given by

1 + 𝛽 + 𝛽2 +⋯ =

𝑖=0

∞

𝛽𝑖 =
1

1 − 𝛽

𝑚𝑡: momentum (mass times velocity)
0 < 𝛽 < 1, typical value = 0.9
If 𝛽=0 the method reduces to gradient descent

𝑚𝑡 = 𝛽𝑚𝑡−1 + 𝑔𝑡−1
𝜃𝑡 = 𝜃𝑡−1 − 𝜂𝑡𝑚𝑡

Optimization, Machine Learning

27Spring 2023

8.2 First-order methods
Nesterov momentum

The Nesterov accelerated gradient method modifies the gradient descent to include an
extrapolation step, as follows:

෨𝜃𝑡+1 = 𝜃𝑡 + 𝛽𝑡(𝜃𝑡 − 𝜃𝑡−1)
𝜃𝑡+1 = ෨𝜃𝑡+1 − 𝜂𝑡∇ℒ(෨𝜃𝑡+1)

This is essentially a form of one-step “look ahead”, that can reduce the amount of oscillation.

Rewritten in the same format as standard momentum:

𝑚𝑡+1 = 𝛽𝑚𝑡 − 𝜂𝑡∇ℒ(𝜃𝑡 + 𝛽𝑚𝑡)
𝜃𝑡+1 = 𝜃𝑡 +𝑚𝑡+1

Optimization, Machine Learning

28Spring 2023

8.2 First-order methods
Nesterov momentum

✓ This method can be faster than standard momentum:

the momentum vector is already roughly pointing in the right direction, so measuring the

gradient at the new location, 𝜃𝑡 + 𝛽𝑚𝑡, rather than the current location, 𝜃𝑡, can be more

accurate.

✓ The Nesterov accelerated gradient method is provably faster than steepest descent for

convex functions when 𝛽 and 𝜂𝑡 are chosen appropriately.

✓ It is called “accelerated” because of this improved convergence rate, which is optimal for

gradient-based methods using only first-order information when the objective function is

convex and has Lipschitz-continuous gradients.

✓ In practice, however, using Nesterov momentum can be slower than steepest descent, and

can even unstable if 𝛽 or 𝜂𝑡 are misspecified.

Optimization, Machine Learning

29Spring 2023

8.3 Second-order methods

first-order methods: Optimization algorithms that only uses the gradient.
Advantage: the gradient is cheap to compute and to store
Disadvantage: they do not model the curvature of the space, and hence they can be slow to

converge.

Second-order methods: incorporates curvature in various ways (e.g., via the Hessian).
Advantage: faster convergence

Optimization, Machine Learning

30Spring 2023

8.3 Second-order methods

The classic second-order method is Newton’s method. This consists of updates of the form
𝜃𝑡+1 = 𝜃𝑡 − 𝜂𝑡𝐻𝑡

−1𝑔𝑡
where

𝐻𝑡 ≜ ∇2ℒ 𝜃 |𝜃𝑡 = ∇2ℒ(𝜃𝑡) = H(𝜃𝑡)

is assumed to be positive-definite to ensure the update is well-defined.
The intuition for why this is faster than gradient descent is that the matrix inverse 𝐻−1 “undoes”
any skew in the local curvature.

Newton’s method

Optimization, Machine Learning

31Spring 2023

8.3 Second-order methods

Consider making a second-order Taylor series approximation of ℒ 𝜃 around 𝜃𝑡:

ℒ𝑞𝑢𝑎𝑑 𝜃 = ℒ 𝜃𝑡 + 𝑔𝑡
𝑇 𝜃 − 𝜃𝑡 +

1

2
𝜃 − 𝜃𝑡

𝑇𝐻𝑡 𝜃 − 𝜃𝑡

The minimum of ℒ𝑞𝑢𝑎𝑑 is at

𝜽 = 𝜽𝒕 −𝑯𝒕
−𝟏𝒈𝒕

Newton’s method

Optimization, Machine Learning

32Spring 2023

8.3 Second-order methods

✓ if the quadratic approximation is a good one 𝑑𝑡 = −𝐻𝑡
−1𝑔𝑡

✓ in a “pure” Newton method 𝜂𝑡 = 1

However, we can also use line search to find the best step size; this tends to be more robust as

using 𝜂𝑡 = 1 may not always converge globally.

➢ If we apply this method to linear regression, we get to the optimum in one step, since we

have 𝐻 = 𝑋𝑇𝑋 and 𝑔 = 𝑋𝑇𝑋𝑤 − 𝑋𝑇𝑦, so the Newton update becomes

𝑤1 = 𝑤0 − 𝐻−1𝑔 = 𝑤0 − 𝑋𝑇𝑋 −1 𝑋𝑇𝑋𝑤0 − 𝑋𝑇𝑦 = 𝑤0 − 𝑤0 + 𝑋𝑇𝑋 −1𝑋𝑇𝑦

which is the OLS estimate.

➢ when we apply this method to logistic regression, it may take multiple iterations to converge

to the global optimum

Newton’s method

Optimization, Machine Learning

33Spring 2023

8.3 Second-order methods
BFGS and other quasi-Newton methods

Quasi-Newton (variable metric) methods: iteratively build up an approximation to the Hessian
using information gleaned from the gradient vector at each step.
BFGS: updates the approximation to the Hessian 𝐵𝑡 ≈ 𝐻𝑡 as follows:

𝐵𝑡+1 = 𝐵𝑡 +
𝑦𝑡𝑦𝑡

𝑇

𝑦𝑡
𝑇𝑠𝑡

−
(𝐵𝑡𝑠𝑡)(𝐵𝑡𝑠𝑡)

𝑇

𝑠𝑡
𝑇𝐵𝑡𝑠𝑡

𝑠𝑡 = 𝜃𝑡 − 𝜃𝑡−1
𝑦𝑡 = 𝑔𝑡 − 𝑔𝑡−1

If 𝐵0 is positive-definite, and the step size 𝜂 is chosen via line search satisfying both the Armijo
condition and the following curvature condition :

∇ℒ(𝜃𝑡 + 𝜂𝑑𝑡) ≥ 𝑐2𝜂𝑑𝑡
𝑇∇ℒ(𝜃𝑡)

Then 𝐵𝑡+1 will remain positive definite. The constant 𝑐2 is chosen within (𝑐, 1) where 𝑐 is the
tunable parameter. The two step size conditions are together known as the Wolfe conditions.
We typically start with a diagonal approximation, 𝑩𝟎 = 𝑰. Thus BFGS can be thought of as a
“diagonal plus low-rank” approximation to the Hessian.

Optimization, Machine Learning

34Spring 2023

8.3 Second-order methods
BFGS and other quasi-Newton methods

Alternatively, BFGS can iteratively update an approximation to the inverse Hessian, 𝐶𝑡 ≈ 𝐻𝑡
−1, as

follows:

𝐶𝑡+1 = 𝐼 −
𝑠𝑡𝑦𝑡

𝑇

𝑦𝑡
𝑇𝑠𝑡

𝐶𝑡 𝐼 −
𝑦𝑡𝑠𝑡

𝑇

𝑦𝑡
𝑇𝑠𝑡

+
𝑠𝑡𝑠𝑡

𝑇

𝑦𝑡
𝑇𝑠𝑡

Since storing the Hessian approximation still takes 𝑂(𝐷2) space, for very large problems:
limited memory BFGS (L-BFGS):
✓ Control the rank of the approximation by only using the 𝑀 most recent (𝑠𝑡 , 𝑦𝑡) pairs.
✓ Ignoring older information.
Rather than storing 𝐵𝑡 explicitly, we just store these vectors in memory, and then approximate
𝐻𝑡
−1𝑔𝑡 by performing a sequence of inner products with the stored 𝑠𝑡 and 𝑦𝑡 vectors.

The storage requirements are therefore 𝑂(𝑀𝐷).
Typically choosing 𝑀 to be between 5–20 suffices for good performance.

Optimization, Machine Learning

37Spring 2023

8.4 Stochastic gradient descent

• stochastic optimization: The goal is to minimize the average value of a function:
ℒ 𝜃 = 𝔼𝑞(𝑧)[ℒ 𝜃, 𝑧]

At each iteration, we assume we observe ℒ𝑡 𝜃 = ℒ 𝜃, 𝑧𝑡 where 𝑧𝑡~𝑞.

• stochastic gradient descent (SGD):

If the distribution 𝑞(𝒛) is independent of the parameters we are optimizing, we can use 𝑔𝑡
= ∇𝜃ℒ𝑡 𝜃𝑡 . In this case, The resulting algorithm can be written as follows:

𝜃𝑡+1 = 𝜃𝑡 − 𝜂𝑡∇ℒ 𝜃𝑡, 𝑧𝑡 = 𝜃𝑡 − 𝜂𝑡𝑔𝑡

As long as the gradient estimate is unbiased, then this method will converge to a stationary
point, providing we decay the step size 𝜂𝑡 at a certain rate.

a “noise” term, coming from the environment

a training example drawn randomly from the training set
𝒛: a random input to the objective

Optimization, Machine Learning

38Spring 2023

8.4 Stochastic gradient descent
Application to finite sum problems

finite sum problem:
many model fitting procedures are based on empirical risk minimization, which involve
minimizing the following loss:

ℒ 𝜃𝑡 =
1

𝑁

𝑛=1

𝑁

ℓ 𝑦𝑛, 𝑓 𝑥𝑛; 𝜃𝑡 =
1

𝑁

𝑛=1

𝑁

ℒ𝑛 𝜃𝑡

The gradient of this objective:

𝑔𝑡 =
1

𝑁

𝑛=1

𝑁

∇𝜃ℒ𝑛 𝜃𝑡 =
1

𝑁

𝑛=1

𝑁

∇𝜃ℓ 𝑦𝑛, 𝑓 𝑥𝑛; 𝜃𝑡

approximate this by sampling a minibatch of 𝐵 ≪ 𝑁 samples:

𝑔𝑡 ≈
1

𝐵𝑡

𝑛∈𝐵𝑡

∇𝜃ℒ𝑛 𝜃𝑡 =
1

𝐵𝑡

𝑛∈𝐵𝑡

∇𝜃ℓ 𝑦𝑛, 𝑓 𝑥𝑛; 𝜃𝑡

𝐵𝑡: a set of randomly chosen examples to use at iteration 𝑡.

✓ the theoretical rate of convergence of SGD is slower than batch GD, but in practice SGD is
often faster, since the per-step time is much lower.

Optimization, Machine Learning

39Spring 2023

8.4 Stochastic gradient descent
Example: SGD for fitting linear regression

least mean squares (LMS) algorithm (delta rule, Widrow-Hoff rule):
Objective:

ℒ 𝜃 =
1

2𝑁

𝑛=1

𝑁

(𝑥𝑛
𝑇𝜃 − 𝑦𝑛)

2=
1

2𝑁
𝑋𝜃 − 𝑦 2

2

The gradient:

𝑔𝑡 =
1

𝑁

𝑛=1

𝑁

(𝜃𝑡
𝑇𝑥𝑛 − 𝑦𝑛)𝑥𝑛

Now consider using SGD with a minibatch size of 𝐵 = 1. The update becomes
𝜃𝑡+1 = 𝜃𝑡 − 𝜂𝑡 𝜃𝑡

𝑇𝑥𝑛 − 𝑦𝑛 𝑥𝑛

𝑛 = 𝑛(𝑡): the index of the example chosen at iteration t.

Optimization, Machine Learning

40Spring 2023

8.4 Stochastic gradient descent
Example: SGD for fitting linear regression

Optimization, Machine Learning

41Spring 2023

8.4 Stochastic gradient descent
Choosing the step size (learning rate)

overly small learning rate underfitting
overly large learning rate instability of the model

fail to converge to a local optimum

Optimization, Machine Learning

42Spring 2023

8.4 Stochastic gradient descent
Choosing the step size (learning rate)

Choosing a good learning rate:
1. Start with a small learning rate and gradually increase it, evaluating performance using a small
number of minibatches.
2. then make a plot and pick the learning rate with the lowest loss.

a sufficient condition for SGD to achieve convergence is if the learning rate schedule satisfies the
Robbins-Monro conditions:

𝜂𝑡 → 0,
σ𝑡=1
∞ 𝜂𝑡

2

σ𝑡=1
∞ 𝜂𝑡

→ 0

Examples of learning rate schedules:

piecewise constant: 𝜂𝑡 = 𝜂𝑖 𝑖𝑓 𝑡𝑖 ≤ 𝑡 ≤ 𝑡𝑖+1
𝑡𝑖: a set of time points at which we adjust the learning rate to a specified value.

exponential decay: 𝜂𝑡 = 𝜂0𝑒
−𝜆𝑡

polynomial decay: 𝜂𝑡 = 𝜂0(𝛽𝑡 + 1)−𝛼

Optimization, Machine Learning

43Spring 2023

8.4 Stochastic gradient descent
Choosing the step size (learning rate)

Examples of learning rate schedules:

step decay: 𝜂𝑖 = 𝜂0𝛾
𝑖

reduces the initial learning
rate by a factor of 𝛾 for each
threshold.

𝜂0 = 1, 𝛾 = 0.9

square-root schedule:

𝜂𝑡 = 𝜂0
1

𝑡 + 1

𝛼 = 0.5, 𝛽 = 1

reduce-on-plateau: the
thresholds times are
computed adaptively, by
estimating when the train or
validation loss has
plateaued.

Optimization, Machine Learning

44Spring 2023

8.4 Stochastic gradient descent
Choosing the step size (learning rate)

learning rate warmup (one-cycle learning rate schedule): In the deep learning community,
another common schedule is to quickly increase the learning rate and then gradually decrease it
again.
cyclical learning rate: It is also possible to increase and decrease the learning rate multiple
times, in a cyclical fashion.

Optimization, Machine Learning

45Spring 2023

8.4 Stochastic gradient descent
Iterate averaging

iterate averaging (Polyak-Ruppert averaging): To reduce the variance of the estimate produced
by SGD, we can compute the average using:

ҧ𝜃𝑡 =
1

𝑡

𝑖=1

𝑡

𝜃𝑖 =
1

𝑡
𝜃𝑡 +

𝑡 − 1

𝑡
ҧ𝜃𝑡−1

➢ The estimate ҧ𝜃𝑡 achieves the best possible asymptotic convergence rate among SGD
algorithms, matching that of variants using second-order information, such as Hessians.

usual SGD iterates

Optimization, Machine Learning

46Spring 2023

8.4 Stochastic gradient descent
Variance reduction

various ways to reduce the variance in SGD:
1. stochastic variance reduced gradient (SVRG): The basic idea is to use a control variate, in

which we estimate a baseline value of the gradient based on the full batch, which we then
use to compare the stochastic gradients to.

2. stochastic averaged gradient accelerated (SAGA): Unlike SVRG, it only requires one full
batch gradient computation, at the start of the algorithm. However, it “pays” for this saving
in time by using more memory. In particular, it must store N gradient vectors.

These methods reduce the variance of the gradients, rather than the parameters themselves
and are designed to work for finite sum problems.

Optimization, Machine Learning

50Spring 2023

8.4 Stochastic gradient descent
Preconditioned SGD
Preconditioned SGD involves the following update:

𝜃𝑡+1 = 𝜃𝑡 − 𝜂𝑡𝑀𝑡
−1𝑔𝑡

𝑀𝑡: a preconditioning matrix (preconditioner), typically chosen to be positive-definite.

✓ The noise in the gradient estimates make it difficult to reliably estimate the Hessian.

✓ It is expensive to solve for the update direction with a full preconditioning matrix.
Therefore most practitioners use a diagonal preconditioner 𝑀𝑡.

✓ Such preconditioners do not necessarily use second-order information, but often

result in speedups compared to vanilla SGD.

Optimization, Machine Learning

51Spring 2023

8.4 Stochastic gradient descent
AdaGrad

The ADAGRAD (adaptive gradient) method was originally designed for optimizing convex
objectives where many elements of the gradient vector are zero; these might correspond to
features that are rarely present in the input, such as rare words. The update has the following
form

𝜃𝑡+1,𝑑 = 𝜃𝑡,𝑑 − 𝜂𝑡
1

𝑠𝑡,𝑑+𝜖
𝑔𝑡,𝑑, 𝑠𝑡,𝑑 = σ𝑡=1

𝑡 𝑔𝑡,𝑑
2

The update in vector form:

∆𝜃𝑡= −𝜂𝑡
1

𝑠𝑡 + 𝜖
𝑔𝑡

➢ Viewed as preconditioned SGD, this is equivalent to taking 𝑀𝑡 = 𝑑𝑖𝑎𝑔(𝑠𝑡 + 𝜖)1/2.
➢ This is an example of an adaptive learning rate; the overall step size 𝜂𝑡 still needs to be

chosen, but the results are less sensitive to it compared to vanilla GD.
➢ In particular, we usually fix 𝜂𝑡 = 𝜂0.

Optimization, Machine Learning

52Spring 2023

8.4 Stochastic gradient descent
RMSProp

A defining feature of AdaGrad is that the term in the denominator gets larger over time, so the
effective learning rate drops. While it is necessary to ensure convergence, it might hurt
performance as the denominator gets large too fast.
An alternative is to use an exponentially weighted moving average(EWMA) of the past squared
gradients, rather than their sum:

𝑠𝑡+1,𝑑 = 𝛽𝑠𝑡,𝑑 + (1 − 𝛽)𝑔𝑡,𝑑
2

In practice we usually use 𝛽~0.9, which puts more weight on recent examples. In this case,

𝑠𝑡,𝑑 ≈ 𝑅𝑀𝑆 𝑔1:𝑡,𝑑 =
1

𝑡

𝜏=1

𝑡

𝑔𝜏,𝑑
2

The overall update of RMSProp is

∆𝜃𝑡= −𝜂𝑡
1

𝑠𝑡 + 𝜖
𝑔𝑡

Optimization, Machine Learning

53Spring 2023

8.4 Stochastic gradient descent
AdaDelta

The AdaDelta is similar to RMSprop. However, in addition to accumulating an EWMA of the

gradients in Ƹ𝑠, it also keeps an EWMA of the updates 𝛿𝑡 to obtain an update of the form

∆𝜃𝑡= −𝜂𝑡
𝛿𝑡−1+𝜖

𝑠𝑡+𝜖
𝑔𝑡, 𝛿𝑡 = 𝛽𝛿𝑡−1 + (1 − 𝛽)(∆𝜃𝑡)

2

➢ This has the advantage that the “units” of the numerator and denominator cancel, so we are

just elementwise-multiplying the gradient by a scalar.

➢ This eliminates the need to tune the learning rate 𝜂𝑡 , although popular implementations of

AdaDelta still keep 𝜂𝑡 as a tunable hyperparameter.

➢ Since these adaptive learning rates need not decrease with time, these methods are not

guaranteed to converge to a solution.

Optimization, Machine Learning

54Spring 2023

8.4 Stochastic gradient descent
Adam (adaptive moment estimation)

It is possible to combine RMSProp with momentum. In particular, let us compute an EWMA of
the gradients and squared gradients

𝑚𝑡 = 𝛽1𝑚𝑡−1 + (1 − 𝛽1)𝑔𝑡
𝑠𝑡 = 𝛽2𝑠𝑡−1 + (1 − 𝛽2)𝑔𝑡

2

update:

∆𝜃𝑡= −𝜂𝑡
1

𝑠𝑡 + 𝜖
𝑚𝑡

✓ The standard values for the various constants:

𝛽1 = 0.9, 𝛽2 = 0.999 and 𝜖 = 10−6

✓ For the overall learning rate, it is common to use a fixed value such as 𝜂𝑡=0.001.

✓ As the adaptive learning rate may not decrease over time, convergence is not guaranteed.
✓ If we initialize with 𝑚0 = 𝑠0 = 0, then initial estimates will be biased towards small values.

The authors therefore recommend using the bias-corrected moments, which increase the
values early in the optimization process. These estimates are given by

ෝ𝑚𝑡 = 𝑚𝑡/(1 − 𝛽1
𝑡)

Ƹ𝑠𝑡 = 𝑠𝑡/(1 − 𝛽2
𝑡)

Optimization, Machine Learning

	Slide 1
	Slide 2: Outline
	Slide 3: 8.1 Introduction
	Slide 4: 8.1 Introduction
	Slide 5: 8.1 Introduction
	Slide 6: 8.1 Introduction
	Slide 7: 8.1 Introduction
	Slide 8: 8.1 Introduction
	Slide 9: 8.1 Introduction
	Slide 10: 8.1 Introduction
	Slide 11: 8.1 Introduction
	Slide 12: 8.1 Introduction
	Slide 13: 8.1 Introduction
	Slide 14: 8.1 Introduction
	Slide 15: 8.1 Introduction
	Slide 16: 8.1 Introduction
	Slide 17: 8.1 Introduction
	Slide 18: 8.2 First-order methods
	Slide 19: 8.2 First-order methods
	Slide 20: 8.2 First-order methods
	Slide 21: 8.2 First-order methods
	Slide 22: 8.2 First-order methods
	Slide 24: 8.2 First-order methods
	Slide 25: 8.2 First-order methods
	Slide 26: 8.2 First-order methods
	Slide 27: 8.2 First-order methods
	Slide 28: 8.2 First-order methods
	Slide 29: 8.3 Second-order methods
	Slide 30: 8.3 Second-order methods
	Slide 31: 8.3 Second-order methods
	Slide 32: 8.3 Second-order methods
	Slide 33: 8.3 Second-order methods
	Slide 34: 8.3 Second-order methods
	Slide 37: 8.4 Stochastic gradient descent
	Slide 38: 8.4 Stochastic gradient descent
	Slide 39: 8.4 Stochastic gradient descent
	Slide 40: 8.4 Stochastic gradient descent
	Slide 41: 8.4 Stochastic gradient descent
	Slide 42: 8.4 Stochastic gradient descent
	Slide 43: 8.4 Stochastic gradient descent
	Slide 44: 8.4 Stochastic gradient descent
	Slide 45: 8.4 Stochastic gradient descent
	Slide 46: 8.4 Stochastic gradient descent
	Slide 50: 8.4 Stochastic gradient descent
	Slide 51: 8.4 Stochastic gradient descent
	Slide 52: 8.4 Stochastic gradient descent
	Slide 53: 8.4 Stochastic gradient descent
	Slide 54: 8.4 Stochastic gradient descent

