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Quantifying Chaos

Let chaos storm, Let cloud shapes swarm! I wait for form. Robert Frost,
Pertinax

9.1 Introduction

How chaotic is a system’s chaotic behavior? In this chapter we shall discuss
several ways to give a quantitative answer to that question. Before we get
immersed in the details of these answers, we should ask why we might want to
quantify chaos. One answer lies in a desire to be able to specify quantitatively
whether or not a system’s apparently erratic behavior is indeed chaotic. As we
have seen chaotic behavior generates a kind of randomness and loss of information
about initial conditions, which might explain complex behavior (or at least some of
the complex behavior) in real systems. We would like to have some definitive,
quantitative way of recognizing chaos and sorting out “true” chaos from just noisy
behavior or erratic behavior due to complexity (that is, due to a large number of
degrees of freedom). Second, as we shall see in the next chapter, some of these
quantifiers can give us an estimate of the number of (active) degrees of freedom for
the system. A third reason for quantifying chaotic behavior is that we might
anticipate, based on our experience with the universality of the scenarios
connecting regular behavior to chaotic behavior, that there are analogous universal
features, perhaps both qualitative and quantitative, that describe a system’s
behavior and changes of its behavior within its chaotic regime as parameters of the
system are changed. We will see that indeed some such universal features have
been discovered and that they seem to describe accurately the behavior of actual
systems. Finally, (although this is rarely possible today), we would hope to be able
to correlate changes in the quantifiers of chaotic behavior with changes in the
physical behavior of a system. For example, is there some quantifier whose
changes are linked to the onset of fibrillation in heartbeats or the beginnings of
turbulence in a fluid or noisy behavior in a semiconductor circuit?

In addition to calculating values for particular quantifiers for chaotic systems,
we need to be able to estimate uncertainties associated with those quantifiers.
Without those uncertainties, it is impossible to make meaningful comparisons
between experimentally measured and theoretically calculated values or to compare
results from different experiments. We will suggest several ways of estimating
these uncertainties in our discussion.

To summarize, here are some reasons for quantifying chaotic behavior:

319



320 Chapter 9

1. The quantifiers may help distinguish chaotic behavior from
noisy behavior.

2. The quantifiers may help us determine how many variables
are needed to model the dynamics of the system.

3. The quantifiers may help us sort systems into universality
classes.

4. Changes in the quantifiers may be linked to important
changes in the dynamical behavior of the system.

9.2 Time-Series of Dynamical Variables

The key theoretical tool used for quantifying chaotic behavior is the notion of a
time-series of data for the system. We met up with this idea in Chapter 1 in the
form of a stroboscopic portrait of the current in the semiconductor diode circuit and
later in the more general form of Poincaré sections in state space. In this chapter
we will focus on using a time-sequence of values of a single system variable, say
x(1), to determine the quantitative measures of the system’s (possibly) chaotic
behavior. We will assume that we have recorded a sequence of values x(), x(t;),
x(tp), ... with fp < #; < 1, , and so on, as illustrated in Fig. 9.1. This could be a series
of time-sampled values of some variable, where the time values are fairly close
together, or it could be a series of Poincaré section values for some variable at fairly
widely separated time values.

It is not obvious that such a set of sampled values of just one variable should
be sufficient to capture the features we want to describe. In fact, as we shall argue
in the next chapter, if the sampling is carried out at appropriate time intervals
(which we shall need to specify) and if the sequence is used cleverly, then we can
indeed “reconstruct” the essential features of the dynamics in state space. We will
show in Chapter 10 that we can often determine the number of state variables
needed to specify the state of the system from the time record of just one variable.

Of course, we need to say what we mean by essential. Sampled values of one
variable will clearly not (or, in general, cannot) tell us what the other variables are
doing (unless we happen to have a complete theory for the system). If we limit our
goals, however, to recognizing bifurcations in the system’s behavior and
determining if the behavior is chaotic and if so, how chaotic, then it turns out that
this single variable sequence is sufficient (with some qualifications, of course).

One further comment on measuring a single variable is in order. In almost all
measurements, our instruments measure the dynamical variables indirectly. For
example, if we are interested in temperature, we may actuaily measure the voltage
produced by a thermocouple in contact with our system. We generally assume that
our “measurement function” provides a fairly straightforward representation of the
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Fig. 9.1. A sketch of the sampling of a dynamical variable. The recorded values form the
time series for data anal ysis. Here the samplingisdone att=0, 1, 2, . .. and so on.

actual quantity we want to monitor. Strictly speaking, however, we are monitoring
the dynamics of our measurement function, not the system directly.

It might be tempting to base our analysis of the system’s behavior on
continuous time trajectories, given symbolically as X(¢), where the vector quantity
represents a complete set of dynamical variables for the system. (A complete set is
the minimum number of variables needed to specify uniquely the state of the
system.) In this kind of analysis, the value of X is available for any value of the
time parameter. However, real experiments always involve discrete time sampling
of the variables, and numerical calculations, which we must use for most nonlinear
systems, always have discrete time steps. Since both real experiments and actual
computer calculations always give the variable values in discrete time steps, we
make a virtue of necessity and base our entire discussion on these discrete time
sequences.

The problem of choosing the appropriate time between samples (that is,
choosing t, — t, t; — ¢t,, etc.) is a delicate one. If an infinite amount of noise-free
data is available, then almost any set of time intervals will do. However, for more
realistic situations, with a finite amount of data contaminated by some noise, we
must proceed very cautiously. In the next chapter, we shall develop some “rules of
thumb” for selecting time sample intervals and other features of the data. The
reader who wants to undertake this kind of analysis for her or his data should
consult Chapter 10 and the references at the end of this chapter for more details on





