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Abstract— Hyperspectral unmixing (HU) is a method used to
estimate the fractional abundances corresponding to endmembers
in each of the mixed pixels in the hyperspectral remote sensing
image. In recent times, deep learning has been recognized as an
effective technique for hyperspectral image classification. In this
letter, an end-to-end HU method is proposed based on the
convolutional neural network (CNN). The proposed method uses
a CNN architecture that consists of two stages: the first stage
extracts features and the second stage performs the mapping
from the extracted features to obtain the abundance percentages.
Furthermore, a pixel-based CNN and cube-based CNN, which
can improve the accuracy of HU, are presented in this letter.
More importantly, we also use dropout to avoid overfitting. The
evaluation of the complete performance is carried out on two
hyperspectral data sets: Jasper Ridge and Urban. Compared with
that of the existing method, our results show significantly higher
accuracy.

Index Terms— Convolutional neural networks (CNNs), end-to-
end model, spectral unmixing, spectral-spatial information.

I. INTRODUCTION

YPERSPECTRAL remote sensing has been used in

many applications and has bright prospects for use in
the future applications. Hyperspectral image (HSI) data are
characterized as multiband and have a high resolution in
spectral space. Although hyperspectral data have high spectral
resolution, they have relatively low spatial resolution, which
results in the mixing phenomenon being inevitable in HSIs.
The spectrum of a pixel is a combination of multiple spectra
of various endmembers in accordance with a certain pro-
portion, rather than a pure pixel. Therefore, hyperspectral
unmixing (HU) is an important technique for hyperspectral
data exploitation [1].

The HU model can be divided into two categories: the
linear spectral mixture model (LSMM) and nonlinear spec-
tral mixture model (NLSMM) [2]. The LSMM assumes that
the pixel spectrum is a linear combination of the spectral
components, and the NLSMM holds when the light suffers
multiple scattering owing to different materials being involved.
Keshava and Mustard [3] have studied and discussed the
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mechanism and application range of linear mixed spectra and
nonlinear mixed spectra.

Given that the LSMM is simpler and has some physical
meaning, linear spectral unmixing (LSU) algorithms have been
the focus of a significant amount of research. Traditional
unmixing methods usually include two important procedures:
endmember extraction and fraction estimation [4]. An end-
member extraction algorithm mainly includes the pure pixel
index [5], vertex component analysis [6], and orthogonal bases
algorithm [7]. In recent years, lordache et al. [8] introduced
the idea of sparseness to HU algorithms. The advantage of
this algorithm is that it does not have to assume the existence
of pure pixels and avoids the potential errors produced by
endmember extraction. However, the choice of spectral library
leads to instability in the results.

In general, the LSMM is only applicable to scenes that are
inherently or macroscopically considered to be linearly mixed,
and for some special scenes that are more difficult to describe
accurately, it is necessary to consider the more complex
NLSMM. In recent times, two new techniques for nonlin-
ear spectral unmixing have been attracting attention. In [9],
the generalized bilinear model and hierarchical Bayesian
algorithm for nonlinear unmixing of HSIs were proposed.
In [10], the autoassociative neural network (AANN) for pixel
abundances from hyperspectral data was presented, which
expands over previous efforts in the literature focused on using
neural networks (NNs) for nonlinear unmixing purposes. The
NN structure consists of two stages: at the first stage features
of the input vector are extracted and at the second stage a
mapping is performed from the extracted feature space to
obtain the abundance. However, this method does not take
into account the joint information between spatial and spectral
information, and the feature extraction and unmixing must be
trained separately.

Recently, deep learning has attracted much attention
and been applied to many domains such as object detec-
tion [12], [13] and image classification [14]. In particular,
a convolutional NN (CNN) is one of the most popular net-
works owing to its capability to automatically discover relevant
contextual features. Therefore, the CNN has been used for
HSI classification [15] in which a 3-D CNN model was used
to extract spectral-spatial features and classify the extracted
features. However, there are a few works that consider HU by
using NN, for example the AANN [10].

In this letter, an end-to-end pixel-based CNN and cube-
based CNN for HU are proposed. Owing to the good feature
learning performance of CNNs, a CNN is used to explore
contextual features of HSIs, and then obtain the abundance of
a pixel by using the multilayer perceptron (MLP) architecture
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Fig. 1. Architecture of cube-based CNN with spectral-spatial feature extraction of HSI.

in the last layer. The main characteristics of our framework
are as follows.

1) This work represents the first attempt to address the
spectral unmixing using a deep CNN. In this way, dis-
criminative feature representations can be automatically
learned and interpreted.

The framework is an end-to-end model, which is
straightforward and fast and avoids manual preprocess-
ing and subsequent processing.

The spectral-spatial information is considered in the
unmixing by the HSI patch, which helps in for unmixing
performance improvement.

2)

3)

II. PROPOSED FRAMEWORK
A. Pixel-Based Convolution Spectral Hyperspectral
Unmixing

CNNs have been successfully used for image classifica-
tion [15]. The main characteristic of a CNN is the weight
sharing, which can significantly reduce the number of NN
parameters, and thus prevent the emergence of over fitting,
while reducing the complexity of the NN model. CNNs usually
consist of one or more pairs of convolution and down-sampling
layers, and finally end with several fully connected layers.
Owing to the good capability of high-level feature learning,
we propose to integrate features learning and unmixing of HSI
into a network by using a CNN. In the method, discriminative
features are extracted by a CNN, and then, the features are
used as the input to a new MLP architecture at the last layer
of the network for a pixel-based fuzzy classification procedure
that can obtain the abundance of a pixel by normalizing the
results [16].

As depicted in Fig. 1, the network that we use contains
eleven layers for HU. The input of the network is a spectral
vector of a pixel in the HSI, and the output is the corresponding
label that represents the abundance of land covers for the
pixel. Furthermore, the network consists of four convolution
layers, four down-sampling layers, and two fully connected
layers. After several layers of convolution and down sampling,
we can extract the high-level information of the input vector.
Meanwhile, the fully connected layer is used to fuzzily classify
the extracted features and obtain the abundance corresponding
to the endmembers for each pixel.

For the fully connected layer, it is assumed that the output
unit is “1” when it is associated with the actual land cover
and the others are “0.” Although the network is trained using
binary values in the output vector, the activation function
of the processing layer is a sigmoid function that results

in the output value being in the range [0, 1]. Thus, such
values can be considered to represent the abundance, which is
correlated with fuzzy membership values. The abundance a;
corresponding to the ith class is given by the following
equation:

M
aj = o; / Z Ok (1)
k=1
where o denotes the CNN output associated with the
kth endmember and M is the number of endmembers.

After establishing the model, the next step is training the
network. The parameters of the CNN are randomly initialized
and trained by an error back-propagation algorithm. In our
implementation, we use the mini-batch strategy to update.
Finding the optimal NN for unmixing accurately to minimize
a loss function L between the predicted values and the target

values in a training set
m

1
L= _EZ [y log yi]

i=1

2

where y/ is the output vector of the ith layer, y; is the true
abundance of the input pixel vector, and m is the number of
mini batch, which is set to 100. The objective is to optimize (2)
using the AdaGrad optimizer with a batch size of 100.

B. Cube-Based Convolution Spectral-Spatial Hyperspectral
Unmixing

In addition to spectral information, spatial information is
also very important for HSI analysis. The model integrating
spectral and spatial information will improve the performance
further. CNNs are good at 2-D image analysis. Integrat-
ing spectral and spatial information of HSI, the cube-based
convolution is adopted for HSI unmixing.

Cube-based convolution is described as follows. Formally,
the value at position (x, y, z) of thejth feature map in the
ith layer is given by

Xyz
v;j
Pi—10;,—1R;—1
pqr (x+p)(y+q)(z+r)
=ReLU | by +> > D > Wi v b
m p=0 g=0 r=0

3)

where ReLU(-) is the activate function, b;; is the bias of
the jth feature map in the ith layer, m indexes the feature
map in the (i-1)th layer connected to the current feature map,
and P; and Q; are the height and width of the spatial
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TABLE I
ARCHITECTURE OF NN

Layer Name Input C2 C4 C6 C8 F10 F11
S3 S5 S7 S9
Pixel-b 1x1x198 1x5 1x4 1x5 1x4
ased 1x2 1x2 1x2 1x2
CNN FC FC
Feature 1 3 6 12 24
Kernel map
Size Cubeb  3x3x198 Sx1x1 4x1x1 SxIx1 4x1x1
ased dropout dropout
CNN FC FC
Feature 1 16 32 64 128
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Fig. 2. Quantitative analysis of (a) different input size and (b) learning rate
for the cube-based CNN method in the Jasper Ridge data set.

y.

convolution kernel, respectively. R; is the size of the 3-D
kernel along the spectral dimension and wf;?nr is the (p, g, r)th
value of the kernel connected to the mth feature map in the
previous layer [17].

As depicted in Fig. 1, we choose a local spatial region with
a certain pixel as the center and form a new data cube with
its spectral dimension data. The data cube is used as the input
of the CNN model to perform spectral unmixing. The size
of the input cube is K x K x B, where K x K is the spatial
window size and B indexes the number of spectra. Specifically,
each layer of the CNN contains 3-D convolution and cube-
based down sampling. We use the dropout strategy to avoid
over fitting, which is also helpful for improving unmixing
performance.

III. EXPERIMENTS

To test the performance of the proposed method, we apply
our method to different public data sets, including Jasper Ridge
and Urban data sets. The ground truth for the data sets dates
from [18].

A. Jasper Ridge

Jasper Ridge is a popular hyperspectral data set. It has
100 x 100 pixels. Each pixel is recorded on 224 channels rang-
ing from 380 to 2500 nm. After removing the channels affected
by water vapor and the atmosphere, we obtained 198 channels.
There are four endmembers in the data set: “road,” “soil,”
“water,” and “tree” [19]. On the Jasper Ridge data set, we ran-
domly select about 7500 pixels for learning weights and biases
of each neuron, and the remaining 2500 pixels are used for
testing.

The concrete model of the network is shown in Table I.
C refers to the convolution layers, S refers to the pooling
layers, and F refers to the fully connected layer. We perform
sensitivity analysis of the learning rate parameter on the
Jasper Ridge data set. From Fig. 2(b), we can see that,
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Fig. 3. rmsAAD values of the Jasper Ridge data set by different methods.
TABLE 11
ABUNDANCE STATISTICS AND RMSE VALUES OF JASPER
RIDGE DATA SET BY DIFFERENT METHODS
End- LSU AANN eSVM  Pixel-based Cube-based
member CNN CNN
Tree 0.184 0.065 0.093 0.031 0.017
Water 0.202 0.052 0.084 0.022 0.011
Soil 0.135 0.091 0.128 0.037 0.027
Road 0.115 0.071 0.091 0.035 0.022
Sum 0.636 0.279 0.396 0.125 0.077
TABLE III
ABUNDANCE STATISTICS AND RMSE VALUES OF URBAN
DATA SET BY DIFFERENT METHODS
End Pixel-based Cube-based
-member ~ SU AANN eSVM CNN CNN
Asphalt 0.256 0.153 0.110 0.048 0.031
Grass 0.296 0.167 0.156 0.047 0.027
Tree 0.300 0.160 0.106 0.037 0.022
Roof 0.156 0.089 0.078 0.026 0.021
Metal 0.165 0.125 0.057 0.034 0.019
Dirt 0.166 0.120 0.133 0.044 0.025
Sum 1.339 0.814 0.640 0.236 0.145

for the cube-based CNN when the learning rate is between
0.0001 and 0.001, the root-mean-square error (RMSE) has the
lowest value. Therefore, we set the learning rate 4 as 0.0005.
Similarly, for the pixel-based CNN, we set the learning rate A
as 0.01. We test different sizes of fields to choose an optimal
size for the cube-based CNN framework. We compare several
sizes of input, namely, 1 x 1,3 x 3,9 x 9, 15 x 15 and
21 x 21; the corresponding RMSE is shown in Fig. 2(a). It
is clear that the best output is obtained when the input size is
3 x 3. Therefore, we adopt 3 x 3 as the input size in the two
public data sets.

To evaluate the performance of our methods, we com-
pare our methods with three existing state-of-the-art
approaches; AANN, LSU, and extended support vector
machine (eSVM) [20]. For AANN, the neuron numbers of the
three hidden layers are set as 30, 4, and 30. The training phase
lasts 700 epochs, and the learning rate is set as 0.01. For LSU,
we use fully constrained least-squares LSU, which satisfies
the abundance sum-to-one and the abundance nonnegativity
constraints. The eSVM uses an RBF kernel, and parameters
are selected by five-fold cross validation.
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Fig. 4. Ground-truth and estimated abundances obtained for each endmember material in the Urban data set by different methods (a) Ground truth. (b) LSU

(¢) AANN (d) Pixel-based CNN (e) Cube-based CNN.

We use the root-mean square of the abundance angle dis-
tance (rmsAAD) for quantitative evaluation of performance.
The abundance angle distance (AAD) measures the similarity
between the original abundance fractions (a,,;) and estimated
ones (a,;) as formulated in

T .
AAD,,, = cos™! (M) )

lawill llarll

1/2

N
1 2
rmSAAD = | ; (AAD,,,) : (5)

Fig. 3 depicts the rmsAAD values of different methods.
We can see that the pixel-based CNN and cube-based CNN
achieve better result than those of AANN, LSU, and eSVM
on the Jasper Ridge data set in terms of rmsAAD.

Table II gives a quantitative assessment by calculating the
RMSE of the entire testing set. For each land cover type,
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the RMSE value is given by

RMSE = \/ Dien (@wi —ari)? (6)
N

where N is the number of pixels in the testing set, a,; is the
true abundance of pixel i, and a,; is the estimated abundance
by unmixing methods. We can see that the RMSE of the
pixel-based CNN is 0.125, which is much lower than that of
the eSVM 0.396. In addition, the pixel-based CNN RMSE is
approximately half of the RMSE obtained by the AANN. The
RMSE of the cube-based CNN is about half of the RMSE
obtained by the pixel-based CNN.

B. Urban

Urban is one of the most widely used hyperspectral data
sets in hyperspectral hybrid studies. It has 307 x 307 pix-
els, and there are 210 wavelengths from 400 to 2500 nm.
After removing the channels affected by water vapor and the
atmospheric environment, we obtained 162 channels. There
are six endmembers in these data: “asphalt,” “grass,” “tree,’
“roof,” “metal,” and “dirt.” On the Urban data set, we ran-
domly select about 47 000 pixels for training and the remaining
47249 pixels are used for testing.

The concrete model of the network is shown in Table I. For
the pixel-based CNN, we set the learning rate A as 0.01, and
for the cube-based CNN, we set the learning rate 4 as 0.001.
For the AANN, the neuron numbers of the three hidden layers
are set to be 40, 4 and 40. The training phase lasts 500 epochs,
and the learning rate is set to be le—6.

Table III reports the RMSE values of each endmember. For
the pixel-based CNN the total RMSE value computed over all
of the endmembers is 0.236, which is better than the value
of 0.814 obtained with the AANN and the value of 0.640
obtained with eSVM. For the cube-based CNN, the RMSE
value computed over all of the endmembers is 0.145, which
is the best among all the methods. It can be seen that the
CNN effectively improves the accuracy of the unmixing,
and the cube-based CNN, which utilizes the spectral-spatial
information achieves superior performance.

Fig. 4 shows the ground-truth and estimated abundances
for each endmember material in the Urban data set. We can
see that the distribution of each endmember is relatively
discrete and complex. Nevertheless, the unmixing performance
of our proposed methods is improved significantly. We can see
from the distribution maps of asphalt road that the unmixing
performance achieved by the CNN is more accurate than that
by the other methods. The pixel-based CNN works better than
LSU and the AANN. The cube-based CNN further enhances
the unmixing performance, and the estimated abundances for
each endmember are close to the true distribution image.

IV. CONCLUSION

In this letter, we have presented a pixel-based CNN for
HSI unmixing. To combine the spatial correlation between the
image features in the unmixing process, we have proposed the
cube-based CNN for spectral-spatial HU. It uses a 3-D CNN
model to extract spectral—spatial features, and then obtain the
abundance of a pixel by using MLP architecture in the last
layer. Experimental results on the data sets of Jasper Ridge

and Urban have demonstrated that the proposed methods
outperform the LSU and AANN. In addition, compared to the
pixel-based CNN, the cube-based CNN, which includes more
enriched features, achieves better performance. Deep learning
achieves better results owing to a large number of labeling
samples, but in reality, the labeling samples are difficult to
obtain. In the future work, we can use other learning methods,
such as few-shot learning, to overcome this drawback of HU.
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