tarjomeh

CHAPTER 5 = CONSUMING SECURED RESTFUL SERVICES USING ANGULARJS

Login Page

Enter Username and Password

There was a problem logging in. Please try again

Username

Password

Figure 5-6. Login page with error message

As per the routes defined in an application, such as app. js, you have defined a login form that needs to be
linked with loginController, so let's update your controller. js file.

Updating controller.js for the Login and Logout Authentication
Process

To support the login and logout authentication process, you need to add some more features. You need to
add three new controllers: homeController, loginController, and logoutController. You add these to the
existing UserRegistrationSystem application in the src/main/resources/static/js/controller. js file, as
shown in Listing 5-8.

Listing 5-8. src/main/resources/static/js/controller.js

app.controller('homeController’, function($rootScope, $scope,
$http, $location, $route){

if ($rootScope.authenticated) {
$location.path("/");
$scope.loginerror = false;
} else {
$location.path("/login");
$scope.loginerror = true;

1

app.controller('loginController', function($rootScope, $scope,
$http, $location, $route){
$scope.credentials = {};

$scope.resetForm = function() {
$scope.credentials = null;
}

127

CHAPTER & = CONSUMING SECURED RESTFUL SERVICES USING ANGULARJS

var authenticate = function(credentials, callback) {
var headers = $scope.credentials ? {
authorization : "Basic "
+ btoa($scope.credentials.username +
+ $scope.credentials.password)

W,
.

FoAb

$http.get('user', {
headers : headers
}) .then(function(response) {
if (response.data.name) {
$rootScope.authenticated
} else {
$rootScope.authenticated
}

callback &8& callback();
}, function() {

$rootScope.authenticated = false;
callback && callback();

true;

false;

b
}

authenticate();

$scope.loginUser = function() {
authenticate($scope.credentials, function() {
if ($rootScope.authenticated) {
$location.path("/");
$scope.loginerror = false;

} else {
$location.path("/login");
$scope.loginerror = true;

}

H;
b
D

app.controller('logoutController', function($rootScope, $scope,
$http, $location, $route){
$http.post('logout’, {}).finally(function() {
$rootScope.authenticated = false;
$location.path("/");
1)
1

As shown in Listing 5-8, you created new controllers named homeController, loginController, and
logoutController. The homeController controller checks whether authenticated inside $rootScopeis
true and then sets $location.path with / and loginerror in $scopeto to false, or it sets $location.path
with /login and loginerror in $scope to true.

The loginController controller will be executed when the login page loads. This controller starts with
initializing the credentials object, and then it defines the functions: the resetForm() method that resets the

128

CHAPTER 5~ CONSUMING SECURED RESTFUL SERVICES USING ANGULARJS

input box for the username and password with a null value, the authenticate() function (a local helper
function) that loads a user resource from the back end, and the function loginUser() that you need in the form.

The local helper function authenticate() is called when the controller is loaded to see whether the user
is actually already authenticated, and you need this function just to make a remote call because the actual
authentication is done by the server. This function also sets an application-wide flag called authenticated
that you used in the index.html page to show/hide elements and control which parts of the page are
rendered. You achieved this application-wide flag using $rootScope because it's convenient and easy to
follow, and you need to share the authenticated flag between different controllers.

This authenticate() method makes a GET call to a relative resource called /user. While calling from the
loginUser() function, the authenticate() function adds the Base64-encoded credentials in the request
headers, so on the server it does an authentication and accepts a cookie in return. The loginUser() function
also sets a local $scope. loginerror flag accordingly when it gets the result of the authentication that is
being used to control the display of the error message in the login page.

If the user is authenticated, then you show a Logout button on each web page. Clicking the Logout button
will let logoutController to be executed. The logoutController controller sends an HTTP POST to /logout,
which you do not need to implement on the server because it is added for you already by Spring Security.

To add more control over the default behavior of the logout process provided by Spring Security, you could
use the HttpSecurity callback's inSpringSecurityConfiguration in Memory. java to, for instance, execute
some business logic after logout.

Updating the Back-End Code

You also need to update your back-end code to support the login and logout authentication process in your
UserRegistrationSystem application.

Creating a New RESTful Endpoint to Get the Currently Authenticated User

Asyou saw in Listing 5-8, the authenticate() function makes a GET request to the resource /user to get
the currently authenticated user. So, to service the authenticate() function, you have to add a new REST
endpoint in your UserRegistrationSystem application. Let’s create the ServiceAuthenticate. java class
inside the package com.apress.ravi.Rest under the src/main/java folder, as shown in Listing 5-9.

Listing 5-9. com.apress.ravi.Rest.ServiceAuthenticate.java

package com.apress.ravi.Rest;
import java.security.Principal;

import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RestController;

@RestController
public class ServiceAuthenticate {

@RequestMapping("/user")

public Principal user(Principal user) {
return user;

}

}

If the /user resource is reachable, then it will return the authenticated user.

129

CHAPTER 5~ CONSUMING SECURED RESTFUL SERVICES USING ANGULARJS

Updating the Spring Security Configuration to Handle Login Requests

You also need to update your existing Spring Security configuration file com.apress.ravi.Security.
SpringSecurityConfiguration_InMemory.java, as shown in Listing 5-10

Listing 5-10. SpringSecurityConfiguration_InMemory.java

package com.apress.ravi.Security;

import org.springframework.beans.factory.annotation.Autowired;

import org.springframework.boot.autoconfigure.security.SecurityProperties;
import org.springframework.context.annotation.Configuration;

import org.springframework.core.annotation.Order;

import org.springframework.security.config.annotation.authentication.builders.
AuthenticationManagerBuilder;

import org.springframework.security.config.annotation.web.builders.HttpSecurity;
import org.springframework.security.config.annotation.web.configuration.
WebSecurityConfigurerAdapter;

import org.springframework.security.web.csrf.CookieCsrfTokenRepository;

@Configuration

@0rder (SecurityProperties.ACCESS_OVERRIDE_ORDER)

public class SpringSecurityConfiguration_InMemory
extends WebSecurityConfigurerAdapter {

@Autowired
protected void configureGlobal(AuthenticationManagerBuilder auth)
throws Exception {
auth.inMemoryAuthentication().
withUser("user").password("password")
.roles("USER");
auth.inMemoryAuthentication()
.withUser("admin").password("password")
.roles("USER", "ADMIN");

}

@0verride
protected void configure(HttpSecurity http) throws Exception {

http

«httpBasic()

.realmName("User Registration System")

.and()

.authorizeRequests()
.antMatchers("/login/login.html", "/template/home.html",
“/").pexmitAll()
.anyRequest().authenticated()

.and()
.csrf()
+csrfTokenRepository(CookieCsrfTokenRepository.withHttpOnlyFalse());

}

130

CHAPTER 5 © CONSUMING SECURED RESTFUL SERVICES USING ANGULARJS

In Listing 5-10, you updated your existing configure method to handle the login request. You allowed
anonymous access to the static resources such as /login/login.html, /template/home.html, and /,
because these HTML resources need to be available to anonymous users.

Spring Security provides a special CsrfTokenRepository to send a cookie. When you start with a clean
browser (Ctrl+F5 or incognito in Chrome), the first request to the server has no cookies, but the server sends
back Set-Cookie for JSESSIONID (the regular HttpSession) and X-XSRF-TOKEN, which are the CRSF cookies
that you set up in Listing 5-10. Subsequent requests will have these cookies, which are important: the Spring
Security application doesn't work without them, and they are providing some really basic security features
(authentication and CSRF protection). When you log out, the values of the cookies change. Spring Security
expects the token sent to it in a header called X-CSRF. From the initial request that loads the home page, the
value of the CSRF token was available in the HttpRequest attributes on the server side. Angular has built-in
support for CSRF (which it calls XSRF) based on cookies. Angular wants the cookie name to be XSRF-TOKEN,
and the best part of Spring Security is that it provides it as a request attribute by default.

Running the Application

Let's restart your UserRegistrationSystem application to test these features. Open a browser and visit
http://localhost:8080/, and your application will redirect to the link http://localhost:8080/#/login
to provide a login page, as shown in Figure 5-7.

@ Full Stack Development X

“« C (D locathostB080/# T ¥ e 0

User Registration System

Login 10 go 10 Home Page

Login Page

Enter Username and Password

Username

Password

Figure 5-7. Navigating to the login page

On successful login, after entering the username and password and clicking the Login button, you will be
redirected to the home page, as shown in Figure 5-8.

131

CHAPTER 5 CONSUMING SECURED RESTFUL SERVICES USING ANGULARJS

@ Full Stack Development X
“ C | @ localhost:8080/# LB < e 0 e

User Registration System

[home | ogstoew e | st s

Welcome to User Registration System

« Please click on Register New User 10 register a new user
« Please click on List All Users to get all users

Figure 5-8. Navigating to the home page after logging in to the application

Once you have logged in to your application, you can directly call an endpoint from the same browser. Let's
open a new tab in the same browser where you performed a successful login to your application and visit
http://localhost:8080/api/user/, as shown in Figure 5-9.

(el (e - (m] X
o Full Stack Development X / @ localhost:8080/api/user/ X

“ C | © localhost:3080/api/user/ Qo @ 0D & :

[{"id":1,"name":"Ravi Kant","address":"Lashkariganj; Sasaram; Bihar;

India","email":"ravikantsoni.author@gmail.com"}]

Figure 5-9. Calling the endpoint from the browser

Once you click the Logout button from the web page (other than the login page after successful login), you
will be redirected to the login page. To verify whether you have successfully logged out from the application,
try calling the endpoint from the same browser by visiting http: //localhost:8080/api/usex/. You will be
prompted with a pop-up, as shown in Figure 5-10.

132

CHAPTER 5 © CONSUMING SECURED RESTFUL SERVICES USING ANGULARJS

Ravilkany = O X
_ Full Stack Development X / localhost:8080/api/user/ 4

i C | @® localhost:8080/api/user w @ 0 :

X
Authentication Required

http://localhost:8080 requires a username and password.

User Name: [

Password:
Log In Cancel

Figure 5-10. Authentication pop-up opening once a user is logged out and tries to call the endpoint

Summary

In this chapter, you successfully consumed a secure RESTful service using Angular]S. You started by enabling
Basic Authentication in Spring Security. Then you sent an authorization header with each request. Finally,
you created a login page to perform the login/logout authentication process.

In the next chapter, you will build a RESTful client and test the RESTful services.

133

