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This work deals with a facility location problem in which location and allocation (trans-
portation) policy is defined in two stages such that a first-stage solution should be robust
against the possible realizations (scenarios) of the input data that can only be revealed in a
second stage. This solution should be robust enough so that it can be recovered promptly
and at low cost in the second stage. In contrast to some related modeling approaches from
the literature, this new recoverable robust model is more general in terms of the considered
data uncertainty; it can address situations in which uncertainty may be present in any of
the following four categories: provider-side uncertainty, receiver-side uncertainty, uncer-
tainty in-between, and uncertainty with respect to the cost parameters.

For this novel problem, a sophisticated branch-and-cut framework based on Benders
decomposition is designed and complemented by several non-trivial enhancements,
including scenario sorting, dual lifting, branching priorities, matheuristics and zero-half
cuts. Two large sets of instances that incorporate spatial and demographic information
of countries such as Germany and US (transportation) and Bangladesh and the
Philippines (disaster management) are introduced. They are used to analyze in detail the
characteristics of the proposed model and the obtained solutions as well as the effective-
ness, behavior and limitations of the designed algorithm.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Nowadays, we are more and more aware of the growing presence of dynamism and uncertainty in decision making.
Fortunately, as the decisions become more complex, the availability of modeling, algorithmic and computational tools
increases as well. Facility location and allocation decisions are among the most relevant decisions in several private and pub-
lic transportation contexts and they usually involve strategic and operative policies with mid and long term impacts.
Precisely because of the practical relevance of these decisions, it is important that they incorporate the uncertainty that nat-
urally appears during the planning, modeling and operative process. Such uncertainty can be represented by different real-
izations of the input data: customers that actually require a commodity or a service, locations where the facilities can be
located, the transportation network that can be used for connecting customers with facilities, and the corresponding costs.
The true values of this data usually become available later in the decision process. In such cases a standard deterministic
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optimization model that considers a single possible outcome of the input data can lead towards solutions that are unlikely to
be optimal, or for that matter even feasible, for the final data realization.

Supply chain management is a strategical area in which both uncertainty and facility location are core elements. For
instance, as it is pointed out in Snyder and Daskin (2005), supply chains are particularly vulnerable to disruptions (inten-
tional or accidental), imposing the need of taking into account the possible availability of depots and roads and different
structures of the demand. Likewise, short-term phenomena such as fluctuations in commodity prices (such as oil) or
long-term public policies (such as new toll road concessions) might lead to operational cost increases that should be consid-
ered when deciding the transportation network to be used.

In another context, natural events such as tsunamis, hurricanes or blizzards can produce disastrous effects with unpre-
dictable intensity on populated areas and on the transportation infrastructure. Countries such as Bangladesh and the
Philippines are two typical examples; both of them are regularly hit by hydrological disasters such as floods and typhoons.
According to the Department of Disaster Management of Bangladesh (DDM, 2014), every year around 18% of the country is
flooded, which produces over 5000 causalities and the destruction of more than 7 millions of homes. However, flooded areas
my exceed the 75% of the country in case of severe events (as in 1988, 1998 and 2004). In the case of the Philippines, between
6 and 9 typhoons make landfall every year producing thousands of human losses and incalculable urban destruction; in
November of 2013, typhoon Haiyan produced 6241 causalities and material damage of over 809 millions USD (see
PAGASA, 2014). In these examples, it is crucial to be able to count with a robust system of humanitarian relief facilities that
even in the worst possible scenario can provide assistance with the quickest possible response reducing the number of
human loses after the occurrence of the event.

The Uncapacitated Facility Location Problem (UFL), also referred as the Simple Plant Location Problem, is one of the fun-
damental models in the wide spectrum of Facility Location problems (see, e.g., recent overviews presented in Eiselt and
Marianov (2011), Daskin (2013), and Laporte et al. (2015)). In the classical deterministic version of the UFL one is given
the set of customers, the set of locations, the facility set-up costs and the transportation costs. The goal is to define where
to open facilities and how to allocate the customers to them so that the sum of set-up plus transportation costs is minimized.

In practice, it is usually the case that from the moment that the information is gathered until the moment in which the
solution has to be implemented, some of the data might change with respect to the initial setting. As mentioned above, even
if some (rough) idea about customers and locations is known, changes in demographic, socio-economic, or meteorological
factors can lead to changes in the structure of the demand during the planning horizon, and/or the availability of a given
location to host a facility (even if a facility has been already installed). This means that the solution obtained using a classical
method might become infeasible and a new solution might have to be redefined from scratch. In these cases it would be bet-
ter to recognize the presence of different scenarios for the data and find a solution comprised by first- and second-stage
decisions.

Two well-known approaches to deal with uncertainty in optimization are Two-stage Stochastic Optimization (2SSO) and
Robust Optimization (RO). In 2SSO (see Birge and Louveaux, 2011) the solutions are built in two stages. In the first stage, a
partial collection of decisions is defined which are later on completed (in the second stage), when the true data is revealed.
Hence, the objective is to minimize the cost of the first-stage decisions plus the expected cost of the recourse (second-stage)
decisions. The quality of the solutions provided by this model strongly depends on the accuracy of the random representa-
tion of the parameter values (such as probability distributions) that allow to estimate the second-stage expected cost.
Nonetheless, sometimes such accuracy is not available so the use of RO models dealing with deterministic uncertainty arises
as a suitable alternative (see Kouvelis and Yu, 1997; Bertsimas and Sim, 2004; Ben-Tal et al., 2010). On the one hand these
models do not require assumptions about the distribution of the uncertain input parameters; but on the other hand, they are
usually meant for calculating single-stage decisions that are immune (in a certain sense) to all possible realizations of the
parameter values.

A novel alternative that combines RO and 2SSO is Two-stage Robust Optimization (2SRO); as in RO, no stochasticity of the
parameters is assumed, and as in 2SSO, decisions are taken in two stages. In this case, the cost of the second-stage decision is
computed by looking at the worst-case realization of the data. Therefore, the goal of 2SRO is to find a robust first-stage solu-
tion that minimizes both the first-stage cost plus the worst-case second-stage cost among all possible data outcomes. 2SRO
is a rather generic classification of models; for references on different 2SRO settings we refer the reader to Ben-Tal et al.
(2004) and Zhao and Zeng (2012).

One of the possibilities in the 2SRO framework is Recoverable Robustness (see Liebchen et al., 2009). Recalling our practical
motivation, assume that the facility location and allocation policy is defined in two stages such that we are required to find a
first-stage solution that should be robust against the possible realizations (scenarios) of the input data in a second stage. This
means that the first-stage solution is expected to perform reasonably well, in terms of feasibility and/or optimality, for any
possible realization of the uncertain parameters. An essential element of this approach is the possibility of recovering the
solution built in the first stage (i.e., to modify the previously defined location–allocation policy in order to render it feasible
and/or cheaper) once the uncertainty is resolved in a second stage. The recovery plan is comprised by recovery actions which
are known in advance and whose costs might also depend on the possible scenario. This recovery plan is limited, in the sense
that the effort needed to recover a solution may be limited algorithmically (in terms of how a solution may be modified) and
economically (in terms of the total cost of recovery actions). Therefore, instead of looking for a static solution that is robust
against all possible scenarios without allowing any kind of recovery (which is the case for many RO approaches, see Ben-Tal
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et al., 2010), we want a solution robust enough so that it can be recovered promptly and at low cost once the uncertainty is
resolved. This balance between robustness and recoverability is what defines a recoverable robust optimization problem.

With respect to the UFL, we want to find a solution whose first-stage component (opening of some facilities and allocating
some customers) is implemented before the complete realization of the data. This solution can then be recovered in the sec-
ond stage (to turn it into a feasible one) once the actual sets of customers and locations become available. In this case the
recovery actions correspond to the opening of new facilities, the establishment of new allocations and the re-allocation of
customers.

The Recoverable Robust UFL (RRUFL) looks for a solution that minimizes the sum of the first-stage costs plus the
second-stage robust recovery cost defined as the worst case recovery cost over all possible scenarios. A formal definition
of the RRUFL is given in Section 2.1.

1.1. Our contribution and outline of the paper

The contributions of this work can be summarized as follows: (i) Due to the nature of the considered uncertainty, we use a
recent concept of recoverable robust optimization to formulate a Mixed Integer Programming (MIP) model that allows to
derive a facility location and allocation policy composed by first- and second-stage decisions; (ii) for this novel problem
we design a sophisticated exact branch-and-cut framework based on Benders decomposition which is complemented by
several non-trivial enhancements; and (iii) using instances from two different large classes (representing transportation
and disaster management settings) we analyze in detail the characteristics of the proposed model and the obtained solutions
as well as the effectiveness, behavior, and limitations of the designed approach.

In Section 2 the concept of Recoverable Robustness is presented and the RRUFL is formally defined. The proposed algo-
rithmic framework is described in Section 3. The description of the benchmark instances and a detailed analysis of the com-
putational results are presented in Section 4. Finally, conclusions and final remarks are given in Section 5.

1.2. The uncapacitated facility location problem

It is hard to establish a single seminal work presenting the UFL, nonetheless (Kuehn and Hamburger, 1963) is usually
regarded as the earliest work where the UFL is presented as commonly known today. We refer the reader to Cornuéjols
et al. (1990) and Verter (2011) (including the references therein) for comprehensive surveys on the UFL and some of its
variants.

A MIP formulation for the UFL can be given as follows. Let R be the set of customers, J the set of potential location of facil-
ities, and A a set of links ði; jÞ connecting customers i in R with locations j in J (A # R� J). The cost of opening a facility at loca-
tion j 2 J is given by f j, and the cost of assigning customer i 2 R to facility j 2 J using an existing link ði; jÞ is given by cij. Let

y 2 f0;1gjJj be a vector of binary variables such that yj ¼ 1 if a facility is opened at location j 2 J and yj ¼ 0 otherwise, and let

x 2 f0;1gjAj be a vector of binary variables such that xij ¼ 1 if customer i 2 R is allocated to a facility in j 2 J using link ði; jÞ 2 A.
Using this notation, the UFL can be formulated as follows:

 

 

OPT ¼ min
X
j2J

f jyj þ
X
ði;jÞ2A

cijxij

s:t:
X
ði;jÞ2A

xij ¼ 1; 8i 2 R

xij 6 yj; 8ði; jÞ 2 A; 8j 2 J

y 2 f0;1gjJj and x 2 ½0;1�jAj:
Despite its simple definition, the UFL is known to be NP-Hard (Cornuéjols et al., 1990); however, the current advances in MIP
solvers, computing machinery and the development of sophisticated preprocessing techniques allow to find optimal or
nearly optimal solutions for large instances of the UFL within reasonable time. We refer to Letchford and Miller (2012)
for recent works on reduction procedures for the UFL.

The incorporation of different types of uncertainty when modeling and solving the UFL is not new; in Section 2.2 we will
provide a brief review of Facility Location under uncertainty and compare our setting with previously proposed problems.

2. The recoverable robust UFL

In this section we present a literature review on recoverable robustness and formally define the RRUFL.
Recoverable robust optimization. Recoverable Robust Optimization (RRO) was first introduced in Liebchen et al. (2007,

2009) as a tool for decision making under uncertainty in applications arising in the railway scheduling. In Cacchiani et al.
(Eds.) and D’Angelo et al. (2011) one can find further applications of RRO in the context of railway scheduling.

In the last couple of years, RRO has been applied to other problems. The recoverable robust knapsack problem considering
different models of uncertainty is studied in Büsing et al. (2011). Formulations and algorithms for different variants of the
recoverable robust shortest path problem are given in Büsing (2012). Models, properties and exact algorithms for 
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recoverable robust two-level network design problems are presented in Álvarez-Miranda et al. (2015). A more general
framework of the RRO is studied in Cicerone et al. (2012) where multiple recovery stages are allowed. The authors apply this
new model to timetabling and delay management applications.

Different types of uncertainty, e.g., interval, polyhedral and discrete sets, can be included in the decision process trough
RRO. In this paper, we use discrete sets to model the uncertainty.

 

 

2.1. A formulation of the RRUFL

As mentioned above, facility location along with the corresponding allocation decisions are typically exposed to uncer-
tainty in different input data. As described in Shen et al. (2011), it is possible to classify uncertainty in three categories:
provider-side uncertainty, receiver-side uncertainty, and in-between uncertainty. The first corresponds to the uncertainty in
facility capacity, facility reliability, facility availability, etc.; the second is related to the uncertain structure of the set of cus-
tomers, customer demands, customer locations, etc.; and the third refers to the lack of complete knowledge about the trans-
portation network topology, transportation times or costs between facilities and customers. The proposed recoverable robust
UFL model is a general approach and it can address situations in which uncertainty may be present in any of these three
categories.

Suppose we are given an instance of the UFL in which uncertainty is present in the set of customers R, the set of locations
J, the set of allocation links A and the corresponding set-up and allocation costs. Such application might arise, for instance, in
the event of natural disasters. In these cases it can be very hard to estimate in advance (i) which areas will require human-
itarian relief, (ii) where the emergency facilities (e.g., Red Cross facilities) can be located and (iii) how the damaged areas can
be reached by the emergency brigades coming from the installed facilities. Therefore, instead of dealing with deterministic
sets R; J and A we are given a finite set K of discrete scenarios such that each scenario k 2 K is characterized by its own sets

Rk; Jk and Ak and also by the corresponding set-up and allocation costs.
Formally, let K be a set of scenarios representing possible realizations of the problem data, more precisely, for a given

k 2 K: let Rk be the set of customers that require the service if scenario k is realized; let Jk be the set of locations where facil-

ities can be opened if scenario k is realized; and let Ak be the set of links that can be used if scenario k is realized. We define

R0 ¼
S

k2K Rk as the set of potential customers, J0 ¼
S

k2K Jk as the set of potential locations and A0 ¼
S

k2K Ak as the set of poten-

tial connections. We assume that the classical UFL has at least one feasible solution for R0; J0 and A0, and that each customer

i 2 Rk can be reached by some link from Ak.
The decision maker faces a two-stage decision: she/he needs to define a first-stage plan (to open some facilities and to

allocate some customers to these open facilities) without knowing in advance the actual data that will be revealed. Once

the actual information is available in a second stage (i.e., a single k 2 K and its corresponding Rk; Jk and Ak) additional deci-
sions can be taken in order to recover the first-stage plan and turn it into a feasible solution for the revealed data. A

second-stage decision is said to be feasible if for all k 2 K each customer i 2 Rk is allocated to one installed facility in

j 2 Jk and the allocation link is operational, i.e., ði; jÞ 2 Ak. These second-stage decisions consist of (i) the opening of new facil-
ities, (ii) the allocation of customers to facilities that are either opened in the second-stage or were opened in the first-stage,
and (iii) the re-allocation of customers that were allocated in the first-stage to facilities that are actually not available in the
realized scenario.

In Fig. 1(a) an instance of the RRUFL with set of facilities J0 ¼ fA;B; Cg, set of customers R0 ¼ f1;2;3;4g and with two sce-

narios is shown. Scenario k ¼ 1 is given by R1 ¼ f1;3;4g; J1 ¼ fA;Bg;A1 ¼ fð1;AÞ; ð1;BÞ; ð3;AÞ; ð4;BÞg, and scenario k ¼ 2 is
Fig. 1. Example of an instance and first- and second-stage solutions for the RRUFL.  
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given by R2 ¼ f2;3;4g; J2 ¼ fB;Cg;A2 ¼ fð2;BÞ; ð4;BÞ; ð3;CÞg. In the first stage, allocation and facility set-up costs are 1 and 2,
respectively. In the second stage, allocation and set-up costs are 1.5 and 3, respectively, the cost of re-allocating a customer is
2 and the penalty for a facility opened at a non-available site is 3.5. For simplicity purposes, we have assumed that the facility
set-up costs at all sites are identical, and so are allocation costs. A first-stage solution is shown in Fig. 1(b); a facility at site A
is opened, customers 1 and 3 are allocated to it and the total cost is: 2 ðone openingÞ þ 1þ 1 ðtwo allocationsÞ ¼ 4. For this
given first-stage decision, we present in Fig. 1(c) the optimal second-stage solution in case scenario k ¼ 1 is realized: a facil-
ity at site B has to be installed while the facility at A remains open, customers 1 and 3 keep their allocations while customer 4
is allocated to the facility in B; so the second-stage cost is: 3 ðone openingÞ þ 1:5 ðone allocationÞ ¼ 4:5. The optimal
second-stage solution in case scenario k ¼ 2 is realized is shown in Fig. 1(d): facilities at B and C have to be installed while
the facility at A becomes unavailable, customers 2 and 4 are allocated to the facility at B, while customer 3 has to be re-al-
located to the facility in C; the cost is: 3þ 3 ðtwo openingÞ þ 1:5þ 1:5 ðtwo allocationsÞ þ 2 ðone re-allocationÞþ
3:5 ðone penaltyÞ ¼ 14:5. Therefore, in the worst case, the overall cost of establishing this first-stage solution and recover
it in the second stage is given as maxf4þ 4:5;4þ 14:5g ¼ 18:5. Our goal will be to find the optimal first-stage decision,
so that in the worst-case total cost of the first- and second-stage is minimized. For this example, the optimal first-stage solu-
tion is defined by the installation of a facility in B and the allocation of 4 to it; this solutions induces a first-stage cost of 3 and
worst case second stage cost of 6, yielding a total cost of 9.

MIP formulation. In the first stage, decisions are modeled as follows: let y0 2 f0;1gjJ
0 j be a vector of binary variables such

that y0
j ¼ 1 if a facility is opened at location j 2 J0 in the first stage (at cost f 0

j ) and y0
j ¼ 0 otherwise; let x0 2 f0;1gjA

0 j be a

vector of binary variables such that x0
ij ¼ 1 if the link ði; jÞ 2 A0 is used to allocate customer i 2 R0 to the facility at j 2 J0

(at cost c0
ij) and x0

ij ¼ 0 otherwise. For a given scenario k 2 K , second-stage decisions are defined as follows: let

yk 2 f0;1gjJ
k j be a vector of binary variables such that yk

j ¼ 1 if a facility is opened at location j 2 Jk in the second stage (at

cost f k
j ) and yk

j ¼ 0 otherwise; let xk 2 f0;1gjA
k j be a vector of binary variables such that xk

ij ¼ 1 if the link ði; jÞ 2 Ak is used

to allocate customer i 2 Rk to the facility at j 2 Jk (at cost ck
ij) and xk

ij ¼ 0 otherwise; and let zk 2 f0;1gjA
k j be a vector of binary

variables such that zk
il ¼ 1 if the link ði; lÞ 2 Ak is used to re-allocate customer i 2 Rk to the facility at l 2 Jk (at cost rk

il) and

zk
il ¼ 0 otherwise. If a facility is installed in the first stage at a given location j 2 J0 (y0

j ¼ 1) and this location is available if

scenario k is realized in a second stage (j 2 Jk), then this facility remains open and no extra cost is incurred; if the location

is not available in the second stage (j 2 J0 n Jk), then a penalty pk
j must be paid.

With this definition of variables, a first-stage solution is a pair ðx0; y0Þ 2 f0;1gjA
0 jþjJ0 j satisfying

 

 

x0
ij 6 y0

j ; 8ði; jÞ 2 A0 ðFS:1ÞX
ði;jÞ2A0

x0
ij 6 1; 8i 2 R0: ðFS:2Þ
Given a first-stage solution ðx0; y0Þ and a scenario k 2 K , the recovery cost is the minimum total cost qðx0; y0; kÞ of the
second-stage recovery actions ðxk; yk; zkÞ needed to render the solution feasible. Hence, qðx0; y0; kÞ is found by solving the
following recovery problem:
q y0;x0; k
� �

¼min
X
j2Jk

f k
j yk

j � y0
j

� �
þ
X
ði;jÞ2Ak

ck
ijx

k
ij þ

X
ði;lÞ2Ak

rk
ilz

k
il þ

X
j2J0nJk

pk
j y0

j ðR:1Þ

s:t:
X
ði;jÞ2A0

x0
ij þ

X
ði;jÞ2Ak

xk
ij ¼ 1; 8i 2 Rk ðR:2Þ

X
ði;jÞ2A0nAk

x0
ij 6

X
ði;lÞ2Ak

zk
il; 8i 2 Rk ðR:3Þ

xk
ij þ zk

ij 6 yk
j ; 8ði; jÞ 2 Ak

; 8i 2 Rk ðR:4Þ

y0
j 6 yk

j ; 8j 2 Jk ðR:5Þ

yk 2 f0;1gjJ
k j
; xk 2 f0;1gjA

k j
; zk 2 f0;1gjA

k j
: ðR:6Þ
Objective function (R.1) is comprised by the set-up cost of facilities in the second-stage
P

j2Jk f k
j ðyk

j � y0
j Þ

� �
, the allocation cost

in the second-stage
P
ði;jÞ2Ak ck

ijx
k
ij

� �
, the cost of re-allocating customers

P
ði;lÞ2Ak rk

ilz
k
il

� �
, and the total penalty paid by those

facilities opened in the first stage that can not operate if scenario k 2 K is realized
P

j2J0nJk pk
j y0

j

� �
. Constraints (R.2) state that

a customer is either allocated in the first stage
P
ði;jÞ2A0 x0

ij

� �
or in the second-stage

P
ði;jÞ2Ak xk

ij

� �
. Constraints (R.3) model the

fact that if a customer i 2 Rk has been allocated in the first-stage to a facility j 2 J0 by means of a link ði; jÞ 2 A0 n Ak then it has 
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to be re-allocated to another facility l 2 Jk through a link ði; lÞ available in the second-stage
P
ði;lÞ2Ak zk

il

� �
. Constraints (R.4)

impose that if a customer is allocated or re-allocated to a facility j 2 Jk, then that facility has to be available and reachable
in the second-stage. The fact that a facility that has been opened in the first stage should remain opened in the second stage
is modeled by (R.5). The nature of the variables is imposed in (R.6) (note that one can also relax the integrality constraints for
xk and zk;8k 2 K).

For a given first-stage solution ðx0; y0Þ the robust recovery cost Rðx0; y0Þ corresponds to the maximum recovery cost among
all k 2 K , i.e.,

 

 

R x0; y0
� �

¼max
k2K

q x0; y0; k
� �

: ðRRÞ
Combining (FS.1) and (FS.2), (R.1)–(R.6) and (RR), we define the Recoverable Robust UFL problem (RRUFL) as
OPTRR ¼min
X
j2J0

f 0
j y0

j þ
X
ði;jÞ2A0

c0
ijx

0
ij þ R x0; y0� �

ð1Þ

s:t: ðFS:1Þ—ðFS:2ÞðR:2Þ—ðR:6Þ and ðx0; y0Þ 2 f0;1gjA
0 jþjJ0 j

: ð2Þ
In the proposed formulation of the RRUFL we impose that each customer i 2 Rk has to be assigned (or re-assigned) to

exactly one available facility j 2 Jk for any given k 2 K. It is possible to relax this and, instead, impose a penalty, say tk
i , if cus-

tomer i 2 Rk is not served by any facility if scenario k is realized. This can be done by introducing a dummy facility pk with a

set-up cost equal to 0 and connecting it to every customer i 2 Rk with an allocation (and re-allocation) cost ck
ip ¼ rk

ip ¼ tk
i .

In many applications it is natural to think that whichever decision we take in the future it will be more expensive than if it
would have been taken at present. For instance, opening a facility at a given location is likely to be more expensive later on in

the planning horizon than now (f k
j P f 0

j ). Likewise, an agreement between a depot (facility) and a customer is expected to
have better conditions (for one of the two parties at least) if it is established earlier than if it is defined when the market
conditions have evolved (ck

ij P c0
ij). Furthermore, it is also natural to think that if an already agreed pact between a depot

and a customer is forced to be changed (e.g., because no allocation link is available between them), this will entail an addi-

tional re-allocation cost possibly higher than the original one (rk
il P c0

ij, for all l 2 Jk).

An optimal first-stage solution ðx0; y0Þ is robust because, regardless which scenario occurs, it guarantees that the
second-stage actions will be efficient (due to the minimization of the worst case) and easy to implement (because only a
simple UFL has to be solved). Hence, the more scenarios we take into consideration to find ðx0; y0Þ, the more robust the solu-
tion is; because we are foreseeing more possible states of the future uncertainty. Unlike common approaches of RO that pro-
tect solutions against perturbations in parameters as costs or demands, our approach also hedges against uncertainty in the
very topology of the network. Likewise, a first-stage solution is recoverable, or possesses recoverability, because it can become
feasible in a second stage by means of second-stage actions.

The robust UFL without recovery. To assess the effectiveness and benefits of the RRULF, we also introduce another natural,
but more conservative, model. Assume a decision-making context equivalent to the one taken into account before. Consider a
model in which first-stage decisions are comprised only by y0 and second-stage decisions only by xk;8k 2 K. This is, an 2SRO
model in which facilities can be opened only in the first stage and allocations can be decided only in the second stage. We
will refer to this new problem simply as Robust Uncapacitated Facility Location without Recovery (RUFL). This alternative
model lacks the concept of recoverability since the solution cannot be intrinsically changed: no new facility can be opened
and there is no need to re-allocate any customer in the second stage. Therefore, the solutions of such model although pos-
sibly more robust (since they are more conservative) are expected to be more expensive, either because unnecessarily many
facilities have to be opened in the first stage or because the second-stage allocation costs are considerably higher than those
of the first stage. If we consider again the instance in Fig. 1(a), one can easily see that for this new model the optimal (and
only feasible) first-stage solution would be given by the installation of facilities in A;B and C (with a cost of 6). In both k ¼ 1
and k ¼ 2 the optimal second-stage cost would be 8. This leads to a total cost equal to 6þmaxf8;8g ¼ 14, which is more
than the cost of the optimal solution of the RRUFL which is 9.
2.2. The RRUFL and previously proposed problems

Already in the 70s efforts were devoted to provide both theoretical and algorithmic contributions on Stochastic UFL. In
Snyder (2006) one can find an excellent review on Facility Location under uncertainty, describing contributions not only
from the stochastic but also from the RO perspective. More recent references to Facility Location under uncertainty include
Snyder and Daskin (2005), Averbakh (2005), Snyder and Daskin (2006), Cui et al. (2010), Shen et al. (2011),
Albareda-Sambola et al. (2011), Adjiashvili (2012), Gao (2012), Alumur et al. (2012), Albareda-Sambola et al. (2013),
Gïlpinar et al. (2013), Li et al. (2013) and An et al. (2014).  
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Our definition of the RRUFL, as well as the algorithmic framework described later, spans different possible cases of uncer-
tainty in Facility Location. Some of them have been already addressed in the literature by the use of stochastic and robust
two-stage models.

For instance if Jk ¼ J0 and Ak ¼ A0;8k 2 K , then we are only addressing uncertainty in the set of customers and, eventually,
in the second-stage costs. A 2SSO approach for this problem has been considered in Ravi and Sinha (2006), where approx-
imation algorithms have been proposed. In Snyder and Daskin (2005), Cui et al. (2010), Shen et al. (2011) and Li et al. (2013),

uncertainty has been addressed only in the set of locations (Rk ¼ R0 and Ak ¼ A0
;8k 2 K). As stressed by the authors, this

model is suitable for applications where facilities might become unavailable in a second stage due to disruptions caused
by natural disasters, terrorists attacks or labor strikes (see Cui et al., 2010). These papers share two important features.
First, uncertainty is tackled by means of 2SSO since probabilities of facility failure are known in advance for each scenario.
Second, a user is assigned to a so-called primary facility that will serve it under normal circumstances, as well as to a set of
ordered backup facilities such that the first of them that is available will serve the customer when the primary is not available
(see Snyder and Daskin, 2005). This second feature cannot be included in our framework without introducing additional bin-
ary variables; nonetheless decision-maker preferences about the re-allocation of a customer in case the originally assigned
facility fails can be incorporated by a proper definition of the re-allocation second-stage costs.

A third case is the one where only connections are subject to uncertainty (Rk ¼ R0 and Jk ¼ J0;8k 2 K). A 2SRO model of
this case is studied in Hassin and Ravi (2009) where the relevance of such a model of uncertainty is emphasized in the con-
text of response planning after disasters.

3. Algorithmic framework

Note that formulation (1) and (2) has a polynomial number of variables and constraints with respect to jR0j; jA0j and jKj.
Therefore it can be solved directly (as a compact model) through any state-of-the-art MIP solver (e.g., CPLEX). However, as
we will show later, when large realistic instances have to be solved, the direct use of solvers turns out to be impractical.

Model (1) and (2) is a natural candidate to be solved by means of a Benders-like decomposition approach: the first-stage
variables ðx0; y0Þ are incorporated in the master problem (MP) and the second-stage variables ðxk; yk; zkÞ are projected out
and replaced by a single variable x representing the robust recovery cost, for a given ð~x0; ~y0Þ, that is computed by solving

jKj slave problems (SPs). Thus, the objective function (1) becomes OPTRR ¼min
P

j2J0 f 0
j y0

j þ
P
ði;jÞ2A0 c0

ijx
0
ij þx, where

x P q x0; y0; k
� �

;8k 2 K . Hence, for each given value of x0; y0; k
� �

, x can be computed by independently solving jKj problems
(R.1)–(R.6).

In our framework we refrain from the traditional implementation of Benders decomposition, given the drawback that
several MIP problems (MP and SPs) need to be solved at each iteration in order to obtain a single Benders-cut. Nowadays
most of MIP optimization suites provide branch-and-cut frameworks supported by the use of callbacks. These callbacks
allow for the Benders decomposition to be transformed into a pure branch-and-cut approach. The implementation works
as follows: Benders cuts are added to the model as valid lower-bounds on x each time a potential (fractional) solution of
the MP is found by means of solving a Linear Programming (LP) problem in a given node of the enumeration tree. This tech-
nique exploits the benefits of the decomposition allowing to implement additional methods for heuristically finding more
cuts and/or for strengthening the obtained ones. That way, both, the speed and the convergence of the algorithm can be
improved (see, e.g., recent implementations of Ljubić et al. (2013) and Pérez-Galarce et al. (2014)).

Basic separation of L-shaped and integer L-shaped cuts. In our approach, a valid lower bound on x is iteratively imposed by
means of L-shaped and integer L-shaped cuts (see Van Slyke and Wets, 1967; Laporte and Louveaux, 1993). For a given
first-stage solution, the second-stage problem can be decomposed into jKj independent problems: dual variables of the
LP-relaxations of these SPs yield L-shaped cuts that are added to the MP while integer solutions of the SPs yield integer
L-shaped cuts.

At a given node of the enumeration tree, let ð~x0; ~y0Þ be a first-stage solution satisfying (FS.1) and (FS.2) and let ~x be the
current value of variable x. For a given k 2 K , the dual of (R.1)–(R.6) after removing the integrality constrains can be formu-
lated as
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X
i2Rk

ai 1�
X
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~x0
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ði;jÞ2A0nAk

~x0
ij

0
@

1
A

2
4

3
5þX

j2Jk

�j � f k
j

� �
~y0

j þ
X

j2J0nJk

pk
j ~y0

j ðD:1Þ

s:t: ai � dij 6 ck
ij; 8ði; jÞ 2 Ak

; 8i 2 Rk ðD:2Þ

ci � dil 6 rk
il; 8ði; lÞ 2 Ak

; 8i 2 Rk ðD:3Þ
�j þ

X
ði;jÞ2Ak

dij 6 f k
j ; 8j 2 Jk ðD:4Þ

ða; c; d;�ÞP 0; ðD:5Þ
where a; c; d and � correspond to the dual variables of constraints (R.2)–(R.5), respectively. Let ð~a; ~c; ~d; ~�Þ be an optimal solu-
tion to (D.1)–(D.5) with optimal value ~qk. Following the LP-duality theory, an L-shaped (optimality) cut is given by  
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which is added to the model if ~x < ~qk. Note that an L-shaped cut (LS) can be found regardless of ð~x0; ~y0Þ being integer.
Now suppose that ð~x0; ~y0Þ is integer. If there is no k 2 K with ~x < ~qk, then one can attempt to find integer L-shaped cuts

(see Laporte and Louveaux, 1993). For a given k 2 K , let �qk be the optimal value of (R.1)–(R.6) (preserving the integrality con-
straints), if ~x < �qk, then the following valid inequality can be added to the MP,

 

x P �qk
X
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ðx0
ij � 1Þ �

X
ði;jÞ2AknAk

x0
ij þ

X
j2J k
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0
@

1
A; ði-LSÞ
where Ak ¼ fði; jÞ 2 Akj~x0
ij ¼ 1g and J k ¼ fj 2 Jkj~y0

j ¼ 1g are the index sets of the links ði; jÞ 2 Ak and locations j 2 Jk chosen in
the first stage, respectively.

3.1. Strengthening and calculating additional L-shaped cuts

In the following we will describe different enhancements that we have incorporated into our algorithmic framework.
Scenario sorting. Formally speaking, when separating (LS) cuts we only need to add the cut associated with the worst-case

scenario k� ¼ arg maxk2Kð~qkÞ for a given ð~x0; ~y0Þ. However this entails an important disadvantage: exactly jKj LPs and/or ILPs
have to be solved to optimality, and only a single cut is generated out of this eventually large computational effort.

In order to overcome the above described drawback we have designed a strategy that first dynamically sorts scenarios
according to the information available from the previous iterations and then attempts to add not a single but many poten-
tially good cuts. We first note that as long as ~x < ~qk, one can add an (LS) cut. Secondly, it is intuitive to think that for a given
instance there is a subset of scenarios that systematically induce violated cuts, while another subset of scenarios rarely do so.
Therefore, on the basis of the cut violation values, defined as ~qk � ~x, one can dynamically update an ordered list of scenarios
K ¼ ½�k1;

�k2; . . . ; �kK �, placing in the first positions those scenarios that consistently induce large cut violation and at the end
those that rarely satisfy ~x < ~qk.

In our strategy we apply learning mechanisms to identify K and prioritize the search of violated L-shaped cuts using the
first elements of the list until a pre-fixed number MAXcut 6 jKj of violated cuts has been found or a pre-fixed number
MAXfail 6 jKj of failed attempts has been reached.

In Algorithm 1 we present the general scheme of the separation of L-shaped cuts using the scenario sorting strategy. For
each scenario k 2 K , the value freq½k� accumulates the number of separation calls in which we have solved the corresponding
SP. Likewise, the value viol½k� is a cumulative cut violation value of scenario k, over all previous separation calls. In Step 1 the
list K is created and its elements are sorted in decreasing order with respect to viol½k�=freq½k�, which represents the average
violation that each scenario has induced in the previous iterations. In loop 3–12 the L-shaped cuts are added: in line 4 the
first scenario in the list K is taken and removed; the k-th SP is solved in line 5; both vectors needed to sort scenarios are
updated in line 6; if the solution of the SP induces a violated cut (line 7) then the corresponding inequality is added in line
8 and the counter of added cuts is increased (line 9); if no violated cut is generated, the corresponding counter is increased in
line 11.

In our default implementation (and after parameter tuning), we have set MAXcut ¼ 0:25� jKj and MAXfail ¼ 0:25� jKj.

Algorithm 1. Basic L-shaped cut Separation with Scenario sorting

Input: Fractional solution ð~x0; ~y0; ~xÞ; vectors freq and viol; MAXcut and MAXfail.
1: K ¼ sortScenariosðK; viol; freqÞ;
2: Set ccut = 0 and cfail = 0;
3: repeat
4: k ¼ getFirstðKÞ;
5: Solve the LP-relaxation of the k-th SP (R.1)–(R.6) and let ~qk be the corresponding optimal value;
6: freq½k� ¼ freq½k� þ 1 and viol½k� ¼ viol½k� þ ð~qk � ~xÞ;
7: if ~x < ~qk then
8: Insert an L-shaped cut given by (LS) into the LP;
9: ccut++;

10: else
11: cfail++;
12: until ccut = MAXcut or cfail ¼ MAXfail or K ¼ ;
13: Resolve the LP;
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Dual lifting. Clearly, the strength of the generated L-shaped cuts will strongly influence the performance of the algorithm;
the stronger they are, the less MP iterations (hence, the less explored nodes in the enumeration tree) are needed. In this
paper we use a recently proposed technique to strengthen L-shaped cuts (see Ljubić et al., 2013). In contrast to other
approaches for generating stronger cuts (see, e.g., Magnanti and Wong, 1981), this heuristic method does not require to solve
any additional LP problem and the strengthening process can be performed in linear time (with respect to the number of
variables).

Let ð~x0; ~y0Þ be a pair satisfying (FS.1) and (FS.2), ~x the current value of variable x, and ð~a; ~c; ~d; ~�Þ an optimal solution to
(D.1)–(D.5) that satisfies ~x < ~qk. The scheme to strengthen the corresponding L-shaped cut is the following: (i) If for cus-

tomer i 2 Rk we have
P
ði;jÞ2A0 ~x0

ij ¼ 1, then the corresponding dual variable ai does not appear in (D.1). (ii) If for customer

i 2 Rk we have
P
ði;jÞ2A0nAk ~x0

ij ¼ 0, then the corresponding dual variable ci does not appear in (D.1). (iii) If for a facility j 2 Jk

we have ~y0
j ¼ 0, then the corresponding dual variable �j does not appear in (D.1). (iv) Moreover, variables d do not appear

in the objective (D.1) neither. On the basis of (i)–(iv) we observe that we deal with a highly degenerate LP and one can expect
that the optimal solutions to (D.2)–(D.4) usually produce positive slacks (typically, an LP solver will fix the associated dual
variables to zero). The idea is now to produce another LP optimal solution of the dual SP such that these slacks are reduced to
zero. Therefore, the values of the dual coefficients in (LS) will be lifted as follows:

 

 

�ai ¼
~ai if
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(
:

This is why we refer to this procedure as dual lifting. If �ai > ~ai; �cj > ~cj or ��j > ~�j for at least one i 2 Rk or j 2 Jk, respectively,
then the lifted L-shaped cut is given by
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Lemma 1 Ljubić et al. (2013). The lifted L-shaped cuts (l-LS) are valid and strictly stronger than the standard L-shaped cuts (LS).
From the algorithmic point of view, to apply this approach one simply has to insert a cut of type (l-LS) instead of one of

type (LS) in line 8 of Algorithm 1.
We finally point out that similar procedures are used for stabilizing column generation approaches (see, e.g., Leitner et al.,

2013).
Zero-half-L-shaped cuts. Zero-half cuts are a subclass of rank-1 Chvátal-Gomory cuts with multipliers restricted to 0; 1

2

� �
(Caprara and Fischetti, 1996). They play an important role in polyhedral theory, and nowadays they are also incorporated in
major MIP solvers. Instead of using a generic zero-half cut generation (see, e.g., Andreello et al., 2007), we impose zero-half
cuts in combination with the learning mechanisms introduced in the previous section. To this end, for a given k 2 K , observe
that by reordering terms, an arbitrary (LS) or (l-LS) can be written as
x P Kð�nkÞ þ
X
ði;jÞ2A0

�nk
ijx

0
ij þ

X
j2J0

��k
j y0

j ; ð3Þ
where Kð�nkÞ is a constant value and �nk and ��k are the corresponding condensed dual multipliers. Now, let us consider two
scenarios k1 and k2 inducing cuts (l-LS) in a given node of the search tree and such that all coefficients of (3) are integer
for k1 and k2 (with at least one odd value). By first multiplying each coefficient of the two induced cuts by 1=2 and then sum-
ming the two resulting inequalities, we get:
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By rounding up the constant term and each of the coefficients of the above inequality, we get the following zero-half cut:
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Now, suppose that the cut induced by k1 is stronger than the one induced by k2; in this case the resulting zero-half cut (zh-LS)
is stronger than the L-shaped cut corresponding to k2. We use this observation to incorporate zero-half cuts (zh-LS) into the
scheme described in Algorithm 1 for separating L-shaped cuts as follows: Let k1 be the first scenario in K that induces an
L-shaped cut (l-LS); afterward, for each following scenario explored in K inducing a violated cut, we generate the correspond-
ing (l-LS) and combine it with the one obtained by k1, which yields a stronger violated (zh-LS). This strategy is justified by the
fact that the ordering of the elements in K is based on how strong the previously produced cuts have been with respect to the
cut violation.

A matheuristic for generation of additional L-shaped cuts. We have described how we use the current fractional solution
ð~x0; ~y0Þ in order to obtain a collection of valid inequalities of type (LS), (l-LS), (zh-LS) and (i-LS). The idea now is to use
ð~x0; ~y0Þ in order to heuristically obtain an alternative feasible pair ðx̂0; ŷ0Þ and use it to find additional L-shaped cuts at
the root node of the enumeration tree.

The pair ðx̂0; ŷ0Þ is found by a matheuristic that resembles the basic ideas of Local Branching (see Fischetti and Lodi, 2003;

Rei et al., 2009). Let Sx0 ¼ fði; jÞ 2 A0j~x0
ij > pg and Sy0 ¼ fj 2 J0j~y0

j > pg, be the sets of first-stage allocation and location deci-
sions, respectively, whose corresponding optimal LP-values are greater than p, where p is a predefined threshold value. If
ð~x0; ~y0Þ is integer, sets Sx0 and Sy0 represent exactly a feasible first-stage solution. Hamming distances of an arbitrary pair
ðx0; y0Þ to ð~x0; ~y0Þ can be defined as
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For a given ð~x0; ~y0Þ, the alternative solution ðx̂0; ŷ0Þ is found as follows. Let U be the set of points x0; y0;x
� �

defined by the
cuts of type (LS), (l-LS), (zh-LS) or (i-LS) that have been added to the (MP) so far. The solution ðx̂0; ŷ0Þ is found by solving the
following LP problem:
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where the constants jx and jy of (MH.2) and (MH.3), respectively, define the neighborhood within which we want to find
x̂0; ŷ0
� �

. Constraint (MH.4) ensures that the new solution will differ from the original one in at least 1 unit of distance with
respect to y0. The later condition is imposed considering that a small change regarding the set of opened facilities is more
likely to yield a different (and potentially useful) solution than a change on the allocation decisions.

Once that (MH.1)–(MH.6) is solved, the solution x̂0; ŷ0
� �

is used to obtain cuts of type (l-LS) (or (zh-LS) if the feature is
enabled) applying the same procedures explained above. Furthermore, we have implemented an iterative process in which
problem (MH.1)–(MH.6) is solved Mh times, such that the neighborhood size is slightly increased in each following iteration.
More precisely, at a given iteration t;jx and jy are given by:
jx ¼ ð1þ tÞ � #� jSx0 jd e and jy ¼ ð1þ tÞ � #� jSy0 j

 �

;

where # 2 ½0;1� is a user defined parameter. In our default implementation, parameters p; # and Mh are set to 0.1, 0.75 and 2
respectively.

It is well-known that the incorporation of constraints such as (MH.2) and (MH.3) usually decreases the
practical difficulty of a model (see Fischetti and Lodi, 2003), therefore, finding these additional cuts is computationally
inexpensive.

3.2. Primal heuristic

Another component of our algorithm is a primal heuristic that uses the information of the current fractional solution
ð~x0; ~y0Þ and attempts to construct a feasible solution ð�x0; �y0; �xÞ that improves the current upper bound. The scheme of the
primal heuristic is presented in Algorithm 2.
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Function averageLP-Valð~y0;HÞ (see line 1), is given by  
P
j2J0 :~yj>H

~y0
j

jJ0 : ~y0
j > Hj

;
 

which means that �y is computed using only those elements whose LP-values are larger than H, where H is a predefined
threshold value. The value �x is computed similarly (see line 2).

A key element of the proposed heuristic is given in lines 4 and 5: set �J0 (resp. �R0) is built by adding an element j (resp. i) if
~y0

j (resp.
P
ði;jÞ2A0 ~x0

ij) is greater than a value, uniformly randomly generated in the interval ½H; �y� (resp. ½H; �x�). Thanks to the use

of average LP-values �x and �y, important information about the solution topology is transferred from the current LP solution to
the heuristic solution. On the other hand, the use of random thresholds (lines 4 and 5) provides diversification to the heuris-
tic and helps in escaping local optima. The feasible first-stage solution ð�x0; �y0Þ is computed in lines 7 and 8 by means of a very
simple greedy heuristic. The heuristic value of �x is found in line 9. Although jKj ILP problems (R.1)–(R.6) have to be solved
they are not solved to optimality but until a gap of less than 1% is reached (which typically takes at most a few seconds). The
default value of H was set to 0.01.

Algorithm 2. Primal heuristic

Input Fractional solution ð~x0; ~y0; ~xÞ; threshold H.
1: �y ¼ averageLP� Valð~y0;HÞ;
2: �x ¼ averageLP� Valð~x0;HÞ;
3: Initialize �J0 ¼ ;; �R0 ¼ ; and �x ¼ 0;
4: �J0 ¼ fj 2 J0j~y0

j > rand½H; �y�g;
5: �R0 ¼ fi 2 R0j

P
ði;jÞ2A0 ~x0

ij > rand½H; �x�g;
6: if j�J0j > 0 then
7: Set �yj ¼ 1 if j 2 �J0 and �yj ¼ 0 otherwise;
8: Set �xij� ¼ 1 if i 2 �R0 and j� ¼ arg minfði;jÞ2A0 jj2�J0gcij and �xij ¼ 0 otherwise.
9: �x ¼maxk2K q �x0; �y0; k

� �
10: Try to set ð�x0; �y0; �xÞ as incumbent solution;

3.3. Auxiliary variables and branching priorities

Looking more carefully at the objective function of a k-th subproblem, one easily observes that for each customer i 2 R, its

assignment variables are grouped together into binary decisions: (i) the customer is served in the first stage
P
ði;jÞ2A0 x0

ij

� �
, and

(ii) the customer is served in the first stage by a wrong facility
P
ði;jÞ2A0nAk x0

ij

� �
. This motivates us to introduce additional bin-

ary decision variables and impose a new non-standard branching on them. More precisely, we introduce auxiliary binary

variables q; s 2 f0;1gjR
k j, for all k 2 K , as follows:
qk
i ¼

X
ði;jÞ2A0

x0
ij; 8i 2 Rk; 8k 2 K; ð5Þ

sk
i ¼

X
ði;jÞ2A0nAk

x0
ij; 8i 2 Rk; 8k 2 K: ð6Þ
These auxiliary variables play two important roles in our algorithmic framework. First, they are useful in the efficient con-

struction of the LP (and ILP) SPs. The right-hand-side of (R.2) and (R.3) can be fixed for each i 2 Rk without the need of any
extra loop to sum up the values of the first-stage solution ~x0. Second, and more important, these auxiliary variables are used
to guide the branching in a more effective way by imposing higher branching priorities on them. Clearly, fixing to 0 or to 1

one of these variables immediately fixes the value of other variables. For instance if qk
i ¼ 1 and sk

i ¼ 0 for a given i 2 Rk (cus-

tomer i 2 Rk has been allocated in the first-stage to a facility through a link that is available in scenario k in the second stage),

then xk
ij ¼ zk

ij ¼ 0 8ði; jÞ 2 Ak. Otherwise, if qk
i ¼ 0 (customer i 2 Rk has not been allocated in the first-stage to any facility), then

sk
i ¼ 0;

P
i2Rk xk

ij ¼ 1 and zk
ij ¼ 0 8ði; jÞ 2 Ak. Other combinations can be analyzed straightforwardly.

Adding these variables and constraints (5) and (6) does not modify the polyhedral characterization of (1) and (2), so the
computational effort does not intrinsically change by including them.

4. Computational results

In this section we first introduce two sets of benchmark instances that resemble application of facility location in trans-
portation networks and in the disaster management, respectively. We use these instances (i) to analyze the properties of the 
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obtained solutions and their dependence on the cost structure, (ii) for showing the advantages of the recoverable robustness,
and (iii) for assessing the performance of the proposed branch-and-cut algorithm. Finally, we also compare the performance
of the proposed algorithm with the performance of CPLEX when solving formulation (1) and (2) directly (i.e., as a compact
model).

All the experiments were performed on an Intel Core™ i7 (4702QM) 2.2 GHz machine (8 cores) with 16 GB RAM. The
branch-and-cut was implemented using CPLEX™ 12.5 and Concert Technology framework. When testing our
branch-and-cut all CPLEX parameters were set to their default values, except the following ones: (i) All cuts were turned
off, (ii) heuristics were turned off, (iii) preprocessing was turned off, and (iv) the time limit was set to 600 s. Besides, higher
branching priorities were given to y0 and to the auxiliary variables q and s as described in Section 3.3.

We have turned some CPLEX features off (only when running our algorithm) in order to make a fair assessment of the
performance of the techniques described in Section 3.

 

 

4.1. Benchmark instances

We consider two classes of instances, that we refer to as Trans and Dis. Instances of the first class are intended to resem-
ble real transportation networks in which the transportation costs depend on both the distance to be covered and the
amount of commodities to be transported, and where the set-up cost of facilities strongly depends on the demographic char-
acteristics of the corresponding (urban) area. Dis instances approximate situations such as humanitarian relief in natural
disasters in which some transportation links are interdicted, i.e., they are damaged so that the transportation time can be

severely increased. We assume that if a given city i 2 Rk requires to be served but each path from any j 2 Jk to i contains

at least one interdicted link, then the city is still assisted although at a very high response time. Besides, set-up costs f 0
j

are such that one might favor to install facilities in cities where the average distance to all the potential customers is rela-
tively small.

Trans instances. In this class of instances we consider three groups: US, Germany and ND-I. In groups US and Germany

we consider the geographical coordinates and updated data of population of the 500 most populated cities in each country
(see United Nations Statistics Division, 2013). In group ND-I we consider random instances with up to 500 nodes randomly
located in a unit square and population being an integer number taken uniformly at random from the interval
½1� 104;2:5� 106�. We denote by dij the Euclidean distance between cities i and j, and by popi the population size of city i.

Given the coordinates and the population size associated with each node, an instance of the RRUFL is then generated as
follows:

(i) take the first n cities in terms of population;
(ii) define R0 by randomly selecting 50% of the cities;

(iii) for k 2 K define Rk by randomly taking jR0j � rand½0:4;0:6� cities from R0;

(iv) for k 2 K define Jk by randomly taking ðn� jRkjÞ � rand½0:2;0:3� cities from 1; . . . ;n (J0 ¼ [k2K Jk);

(v) for k 2 K define Ak ¼ Rk � Jk (A0 ¼ R0 � J0);
(vi) first- and second-stage transportation/allocation costs are defined as c0

ij ¼ dij � 1
2 ðpopi þ popjÞ �u, ck

ij ¼ ð1þ r1Þ � c0
ij

and rk
ij ¼ ð1þ r2Þ � c0

ij for k 2 K;

(vii) first- and second-stage set-up costs and penalties are defined as f 0
j ¼ q� popj, f k

j ¼ ð1þ r3Þ � f 0
j and pk

j ¼ ð1þ r4Þ � f 0
j

for k 2 K .

All coefficients are finally rounded to their nearest integer values.
Parameter u is given in $ per unit of distance per unit of demand, so the allocation costs are purely expressed in $; param-

eter q is given in $ per inhabitant (so the larger a city is, the more expensive the set-up of a facility is); parameters r1;r2;r3

and r4 are ½0;1� factors representing the increase of the allocation and set-up costs in the second stage.

Note that for these instances, uncertainty is embodied by jKj different realizations of sets Rk and Jk. In both cases, it cor-
responds to randomly picking a variable number of cities among the n largest cities (in terms of population). This scheme
aims at generating different potential realizations of supply and demand. The possibility that a location (and the correspond-
ing facility) becomes unavailable in the second stage, stems from practical applications. For example, from a long term per-
spective, changes in the environmental legislation might force to stop the construction of a facility, or it might impose
environmental mitigation costs that turn the project infeasible. Similarly, from a short term perspective, a facility might
become unavailable due to a labor strike. Our purpose is to present a model of uncertainty that covers different situations
as these two. To this end, a subset of facilities, about 40–60% of them (depending on the scenario, see (iii)) are subject to
failure in the second stage. Notice that, by construction, not necessarily all facilities are subject to failure, but only those that

become unavailable in at least one scenario (i.e., J0 n \kJk). A similar scheme applies for the sets of customers Rk.
As can be seen from (v), for this set of instances we do not consider disruptions in the transportation network, i.e., for a

given k 2 K , all customers in Rk can be reached from every facility in Jk (with higher single-stage costs, though).  
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Fig. 2(a) and (b) shows the graphical representation of the 500 cities used in groups US and Germany respectively (the
name of the first 25 cities are provided). For n ¼ 500, each scenario resembles a UFL instance with �125 customers and

�100 locations (the sets Jk and Rk may intersect).
To create a large set of benchmark instances, we use the following parameter settings: n 2 f100;250;500g,

u 2 f10�5;10�4;10�3;10�2g;q 2 f0:001;0:01;0:1;1:0g r1;r2 2 f0:05;0:50g, and r3;r4 2 f0:10;1:0g. In our computations
we consider up to 75 scenarios which are created in advance. By doing this, when dealing with instances with 25 scenarios,
we simply use the first 25 scenarios out of those 75. The same applies for 50 scenarios. The scenarios are identical for the
different values of all other parameters. By proceeding in this way, it is easier to measure the impact of considering a larger
number of scenarios. For a given group (US, Germany, or ND-I) there are 3� 4� 4� 2� 2� 2� 2� 3 ¼ 2304 instances to be
solved.

Dis instances. In this class of instances we consider three groups: Bangladesh, Philippines and ND-II. In group
Bangladesh (resp. Philippines) we consider the geographical coordinates and updated data of population of the 128
(resp. 100) most populated cities in each case (see United Nations Statistics Division, 2013); in group ND-II we consider
random instances with 100 nodes randomly located in a unit square and the size of the population is taken uniformly at ran-
dom from ½1� 104;2:5� 106�. In the case of groups Bangladesh and Philippines we use pairwise Euclidean distances
between selected cities and embed them in a network N ¼ ðV ;AÞ, with V being the set of n cities and A the allocation links
(n ¼ 128 for group Bangladesh and n ¼ 100 for group Philippines). For the case of the group ND-II, the network
N ¼ ðV ;AÞ is obtained such that a link is established between two cities i and j if the Euclidean distance is smaller than or
equal to a=

ffiffiffi
n
p

(a is an input parameter fixed to 1.6 in our computations). Fig. 3(a) shows the location of the 128 cities for
the Bangladesh group of instances, Fig. 3(b) illustrates the embedded network N ¼ ðV ;AÞ of the same group, and
Fig. 3(c) shows an example of a first-stage solution.

 

 

Fig. 2. Representation of Trans instances.

Fig. 3. Construction process of Dis instances and an example of a first-stage solution. Bangladesh instances.  
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With the information of each group, Bangladesh, Philippines or ND-II, an instance of the RRUFL is generated as
follows:

(i) define R0 by randomly selecting t% of the cities, with t 2 f25;50;75g;
(ii) for k 2 K define Rk by randomly taking jR0j � rand½0:4;0:6� cities from R0;

(iii) for k 2 K define Jk by randomly taking ðn� jRkjÞ � rand½0:08;0:12� cities from 1; . . . ;n (J0 ¼ [k2K Jk);
(iv) first-stage allocation costs c0

ij are equal to the shortest path cost between i and j in N ¼ ðV ;AÞ using Euclidean distances
duv ; 8fu;vg 2 A;

 

 

Fig. 4. Solutions considering different combinations of ðr3;r4Þ (instances US, n ¼ 500;u ¼ 0:001;q ¼ 0:1 r1 ¼ 0:5, r2 ¼ 0:05 and jKj ¼ 25).

Fig. 5. Solutions considering different combinations of ðu;qÞ (instances Ger, n ¼ 250;r1 ¼ 0:5;r2 ¼ 0:5 r3 ¼ 0:1, r4 ¼ 1:0 and jKj ¼ 25). 



Fig. 6. Influence of cost parameters ðu;qÞ and ðr1;r2;r3;r4Þ on the algorithmic performance and the solution structure (group Germany, n ¼ 250).
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(v) for the second-stage allocation costs we consider random link interdiction, that is: let Ik be a set of

f � jAj � rand½0:8;1:2� links randomly chosen from A. Then dk
uv ¼ duv , for all fu;vg 2 A n Ik, and dk

uv ¼ 100� duv , for

all fu;vg 2 Ik, so ck
ij is equal to the cost of the shortest path between i and j with edge costs given by dk.

Reallocation cost rk
ij is 1:5� dk

ij, for k 2 K;

(vi) first-stage set-up costs are given by f 0
j ¼

P
i2R0 c0

ij=jR
0j, and second-stage set-up and penalty costs are given by

f k
j ¼ ð1þ r3Þ � f 0

j and pk
j ¼ ð1þ r4Þ � f 0

j , for k 2 K.

For this group of instances, uncertainty appears as a discrete set of realizations of sets Rk and Jk, and second-stage allo-

cation and re-allocation costs ck and rk, respectively. As well as in the case of Trans instances, Rk and Jk are defined by ran-
domly picking a variable number of cities among the n largest cities (in terms of population). In this way, we generate

different potential realizations of affected zones (sets Jk) and location of relief facilities (Rk). Likewise, the generation scheme
of different second-stage allocation and re-allocation costs, aims at considering cases in which some connections among
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affected zones and relief facilities are severely affected by the disaster. As can be seen in step (v) of the generation process,

for each scenario k, the affected connections are randomly chosen from all possible links among Rk and Jk.
The remaining parameters are f 2 f0;0:10; 0:25;0:50g;r3 ¼ f0:00;1:00g and r4 ¼ f0:10;1:0;4:0g. All possible parameter

settings, in combination with k 2 f25;50;75g imply that there are 3� 4� 2� 3� 3 ¼ 216 instances to be solved for each
fixed value of n within each group.

 

 

4.2. Trans instances: solutions, robustness and recoverability

Influence of the cost structure. The characteristics of a robust first-stage solution and the corresponding recovery actions
depend not only on the scenario structure but also on the cost structure. If, for example, for a given instance the
second-stage costs are very high with respect to the first-stage costs then the solutions of the RRUFL will tend to have more
facilities and assignments defined in the first stage. Likewise, if the second-stage set-up costs are much higher than the pen-

alty costs (f k
j � pk

j ), we would expect that more facilities will be opened in the first-stage (and eventually more assignments)

than if f k
j 6 pk

j , where the cost of setting-up a facility in the second stage is cheaper than the penalty for a facility placed at a
non-available location.

In Fig. 4 we show the later case by comparing two solutions of an instance of group US. For the first one (Fig. 4(a)), the
penalties are �81% more expensive than the second-stage set-up costs, while for the second one (Fig. 4(b)), the penalties are

45% cheaper. We can see how changing the relation between f k
j and pk

j leads to very different solutions: while in the first case
3 facilities are opened in the first stage and 8 customers are allocated to them, in the second case 14 facilities are opened in
the first stage and 54 customers are allocated.

The relation between parameters u ($ per unit of distance per inhabitant) and q ($ per inhabitant), also influences the
solution structure. Assume that we are given an instance with u < q (set-up costs are higher than the allocation costs)
and another instance with u > q (allocation costs are higher than the set-up costs). We would expect that the solution of
the second instance will be comprised by a larger first-stage component compared to the solution of the first instance.
Fig. 5 depicts this by comparing the solution obtained for u ¼ 0:0001 and q ¼ 0:01 (Fig. 5(a)) with the one obtained for
u ¼ 0:01 and q ¼ 0:001 (Fig. 5(b)). In the first case, only a single facility is open in the first stage and 5 allocations are
defined, while in the second case 8 facilities are installed and 12 allocations are established in the first stage. This effect
is quite intuitive considering that the second stage costs are proportional to the first stage costs for these instances: it is bet-
ter to open facilities in the same place where the demand is located, i.e., in a subset of R0 \ J0, in order to avoid high allocation
expenses (u > q).

A more extensive analysis on the influence of the second-stage cost parameters ðu;qÞ and ðr1;r2;r3;r4Þ on the perfor-
mance of the algorithm and on the solutions characteristics is now presented. In Fig. 6(a) we show the box-plots of the
attained gaps for all the combinations of ðu;qÞ when solving Germany group with n ¼ 250. Each box-plot contains informa-
tion about 48 instances. The maximum and attained gaps are marked with a bold circle and an asterisk, respectively, and the
number of instances solved to optimality is displayed under each box-plot. Recall that u is a factor expressed in $ per unit of
distance per unit of demand, and q is expressed in $ per inhabitant. We can observe the following: (i) The problem becomes
easier (more instances can be solved to optimality) when u is considerably smaller than q (103–105 times smaller), that is,
for those instance where the set-up costs are considerably higher than the operating costs (transportation). (ii) When q < u
we have that the transportation costs are larger than the set-up costs; in these cases the attained gaps are relatively small.
(iii) The problems become harder when u

q P 10�2. These three behaviors can be explained by the fact that in the easier first

two cases there is not as much symmetry in the cost structure between opening and transportation costs as in the third case
(where the opening and transportation costs are of the same magnitude).

In Fig. 6(b) we show the box-plots of the attained gaps for the 16 combinations of ðr1;r2;r3;r4Þ. Average and maximum
gaps are marked with bold circles and asterisk as before, and under each box-plots we provide the average value of the num-
ber of facilities open in the first stage and the number of first-stage decisions (opened facilities and defined allocations). From
this graphic, one can highlight the following observations: (i) The largest first-stage components (as well as high gaps) are
obtained when the factor of the re-allocation cost r2 is 0.05 and, especially, when r1 ¼ 0:5 (the increasing factor of the
second-stage allocation costs). (ii) The algorithmic performance is considerably more stable (but not better on the average)
when r1 is 0.05 than when it is 0.5. (iii) The algorithm behaves better when the penalty factor r4 is 0.1 than when it is 1.0
(the difference is more clear when r1 ¼ 0:5). These outcomes can be explained as follows. When the second-stage allocation
costs are expensive (50% higher the first-stage value), but the re-allocation costs are cheap (only 5% higher), then an optimal
or nearly optimal first-stage solution will tend to consist of several allocations which, therefore, implies that several facilities
have to opened in the first-stage. On the other hand, if both costs are expensive (r1 ¼ r2 ¼ 0:5), then having a large
first-stage component does not pay off. Having expensive second-stage allocation costs (r1 ¼ 0:5) implies that the xk vari-
ables will likely be equal to 0 (regardless of k); this immediately reduces the average computational effort of the separation
problem. At the same time, this implies that a good first-stage policy is required for having a globally good solution.
However, such a first-stage solution might be hard to find quickly, which explains the large dispersion of gaps observed
when r1 ¼ 0:5. Likewise, if the penalty paid for having a first-stage facility in a non-available location is expensive 
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(r4 ¼ 1:0), then the first-stage solutions will tend to consist of as few facilities as possible (so the total second-stage penalty
for the misplaced facilities is as small as possible); again, the need of a good first-stage policy (at least better than when
r4 ¼ 0:1) explains why the problem becomes harder, especially when a greater value of r1 pushes towards solutions with
more facilities opened in the first stage.

The gain of recovery. A more accurate measure of the benefits of the recovery can be calculated by comparing the solutions
obtained for the RRUFL with those obtained for the RUFL presented in Section 2.1. Recall that the RUFL model is such that
facilities can only be opened in the first stage, whereas allocations can only be established in the second stage. Hence, no
recovery actions (in terms of setting-up new facilities or re-allocating customers) are allowed. To illustrate the benefits of
the recovery, we now define a measure that we will refer to as the Gain of Recovery (GoR). GoR is defined as the relative gain
in terms of cost when using the solution produced by our recoverable robust approach instead of the one produced by the
approach without recovery (the RUFL, in our case).

In Table 1 we report on statistics regarding the GoR. Columns GoRðOPTRRÞ correspond to statistics of the GoR defined as
GoRðOPTRRÞ ¼ OPTR�OPTRR

OPTR
� 100%, where OPTR is the objective function value produced by the RUFL. Columns GoRðOPTxÞ cor-

respond to statistics of the GoR defined as GoRðOPTxÞ ¼ xR�x
xR
� 100%, where xR is the worst-case second stage cost for the

RUFL. The obtained values emphasize the practical benefits of recoverable robustness in cases in which recovery is possible;
both, the costs of the complete policy (first- and second-stage solutions) and the worst-case second stage solutions are on
average 25–40% cheaper (and the difference can scale above 90%). These results clearly justify the benefits of the recovery in
the second stage, when compared to a less flexible decision making policy.

The effort for robustness and the price of robustness. The more scenarios (possible data realizations) we take into account,
the more robust the first-stage solution is expected to be. Nonetheless, this additional robustness is obtained at the expenses
of (i) an increase of the difficulty of the problem, since a larger search space must be considered, and (ii) an increase of the
total solution cost, OPTRR, because more facilities have to be opened and more allocations have to be established in the first
stage or because a new worst-case scenario induces a higher robust recovery cost (i.e., x increases). The first of these effects
has been coined as the Effort for Robustness in Álvarez-Miranda et al. (2015); the second effect is similar to what is called the
Price of Robustness in Bertsimas and Sim (2003).

To illustrate these effects, in Table 2 we report average values of the results obtained for groups US, Germany and ND-I for
varying number of nodes and scenarios (columns Group, n and jKj, respectively). The presented values are related to the solu-
tion characteristics and to the algorithmic performance. Each row corresponds to the results of 256 instances. Column Time
(s) reports the average running times expressed in seconds; column Gap (%) shows the average gaps attained within the time
limit; the average number of facilities opened in the first stage is reported in column jy0j and the average number of
first-stage allocations is given in column jx0j; in columns DOPT% and Dx% we report the average relative increase in the
value of OPTRR, resp. x, when considering 50 and 75 scenarios with respect to the value obtained for 25 scenarios. In column
#Opt the number of instances that were solved to optimality (out of 256) is shown.

The Effort for Robustness is clearly illustrated by the worsening of the algorithmic performance when increasing the num-
ber of scenarios: (i) the running times increase (cf. column Time (s)); (ii) the attained gaps increase (cf. column Gap (%)); and,
hence, the number of solutions solved to optimality (cf. column #Opt) decreases.

The Price of Robustness is demonstrated in columns DOPT% and Dx%, where one can see that, without exception, the aver-
age values of the solution cost and the robust recovery cost increase when increasing jKj from 25 to 50 and from 25 to 75.
Recall that in our model, decision maker needs to implement only the firt stage solution. In columns jy0j and jx0j one can see
that the size of the first-stage solution is more or less constant for a given n, regardless of the value of jKj. Hence, increasing
the number of scenarios does not produce a measurable effect on the size of the first-stage solution but only on the structure
of the second-stage recovery actions (which induces a higher value of x). Similarly, the major economical impact of increas-
ing the number of scenarios is on the costs of the recovery actions. We observe that in all cases (except for two entries of the
group Germany) the value of DOPT% is smaller than the value of Dx%. This means that the obtained first-stage solutions are
such that they allow to reduce the impact of a higher robust recovery cost by balancing robustness and recoverability. The

 

 

Table 1
Statistics of two measures of the Gain of Recovery for different values of n and jKj (groups US, Germany and ND-I with n ¼ 100).

Group jKj GoRðOPTRRÞ GoRðxÞ

Median Ave. Max Median Ave. Max

US 25 34.73 36.28 89.07 31.55 33.96 82.87
50 38.64 39.30 91.94 35.52 37.31 87.46
75 41.34 40.81 93.50 34.61 36.29 89.95

Ger 25 29.17 32.73 90.01 24.91 26.39 84.37
50 29.44 34.39 92.65 26.66 28.31 88.61
75 32.52 37.26 93.90 28.40 32.05 90.62

ND-I 25 24.69 25.31 79.84 29.41 30.24 70.47
50 23.47 25.75 83.49 22.57 26.18 75.79
75 24.12 26.79 85.22 22.76 27.33 78.32 



Table 2
Statistics of solution characteristics and algorithmic performance for different values of n and jKj (groups US, Germany and ND-I).

Group n jKj Time (s) Gap (%) jy0j jx0j DOPT% Dx% #(l-LS) #(l-LS)MH #(i-LS) #BBN #Opt

US 100 25 44.94 0.00 5 7 0.00 0.00 54 4 0 342 251
50 72.09 0.01 5 6 0.12 0.64 79 4 1 284 252
75 86.56 0.01 5 6 1.11 5.23 96 3 0 219 250

250 25 243.26 0.18 11 14 0.00 0.00 105 9 0 183 175
50 229.45 0.06 11 11 2.89 5.61 89 3 0 125 197
75 285.92 0.07 11 11 3.50 6.68 99 2 0 84 172

500 25 458.06 1.10 18 25 0.00 0.00 61 11 0 19 82
50 586.68 1.32 15 19 2.66 3.90 67 5 0 7 11
75 600.00 1.99 16 20 3.63 5.06 79 2 0 1 0

Ger 100 25 21.52 0.00 6 5 0.00 0.00 43 4 0 143 256
50 45.97 0.00 6 5 0.01 0.01 67 4 0 169 252
75 70.71 0.00 6 6 1.51 1.00 98 4 1 171 249

250 25 347.82 0.36 13 14 0.00 0.00 274 9 1 243 134
50 407.43 0.37 12 13 2.94 4.15 172 6 1 165 107
75 449.38 0.55 12 13 3.03 4.25 158 6 0 98 92

500 25 431.51 0.52 17 20 0.00 0.00 59 9 0 31 96
50 542.32 0.58 17 18 1.34 2.78 65 3 0 13 43
75 600.00 2.50 23 28 8.13 6.27 79 1 0 1 0

ND-I 100 25 37.22 0.00 7 10 0.00 0.00 94 5 0 282 256
50 31.60 0.00 6 10 6.44 11.85 66 3 0 99 256
75 48.10 0.00 6 10 6.45 11.82 91 3 0 100 256

250 25 296.20 0.07 16 18 0.00 0.00 103 5 0 287 153
50 384.78 0.12 15 18 7.32 8.22 103 5 1 167 115
75 330.24 0.13 14 16 8.86 10.71 106 4 1 106 151

500 25 543.29 1.98 25 38 0.00 0.00 77 15 0 30 33
50 584.45 2.01 24 33 0.67 5.07 63 7 0 6 12
75 600.00 2.38 23 36 12.25 18.06 79 2 0 1 0
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two entries in which the average value of DOPT% is greater than the average value of Dx%, can be explained by the fact that
not all instances are solved to optimality (especially for n ¼ 500 and jKj ¼ 75), so the non-optimal first-stage solutions are
such that the corresponding recovery costs are sub-optimally high.
4.3. Trans instances: algorithmic performance

Assessment of algorithmic enhancements. In Section 3 we have described several enhancements for our algorithm: cut
strengthening based on dual-lifting, scenario sorting, zero-half cuts, matheuristic generation of cuts and branching priorities
on auxiliary variables. In Fig. 7 we show box-plots of the gaps attained when solving instances of group US with n ¼ 250
when incrementally including the proposed techniques. Each box represents the distribution of the obtained gaps over a
set of 678 instances. The first box-plot corresponds to the basic setting of the algorithm, that is, with the cuts of type (LS)
and (i-LS); the second box-plot shows the gaps obtained when using the strengthening technique based on dual variables
(i.e., when adding (l-LS) instead of (LS)); in the third box-plot we display the gaps obtained when adding the strategy of sce-
nario sorting; the fourth box-plot shows the gaps attained when adding cuts generated by our matheuristic approach; the
gaps attained when strengthening found cuts using zero-half cuts are given in the fifth box-plot; finally, in the sixth box-plot
we show the gaps obtained when imposing higher branching priorities on the auxiliary variables (this last configuration is
our default one). The bold points are the maximum gaps, asterisks are the average gaps and on top of each box we show the
total number of instances (out of 678) that were solved to optimality.

The results clearly demonstrate that all the proposed techniques contribute to the effectiveness of the algorithm and com-
plement each other: the average gap decreases, more instances are solved to optimality and the performance is more stable.
In terms of the marginal contribution to the algorithmic performance, the strengthening technique based on dual-lifting and
imposing higher branching priorities on the auxiliary variables seem to be the techniques that produce largest improve-
ments of the algorithmic performance. Using the basic strategy, only 131 instances can be solved to optimality. On the con-
trary, using a combination of our enhancement methods, 544 instances are solved to optimality within the same time limit.

More detailed indicators of the effectiveness of the considered cuts and their algorithmic performance are provided in
Table 2. In columns #(l-LS), #(l-LS)MH and #(i-LS) we report the average number of L-shaped Cuts, L-shaped Cuts found
via the matheuristic approach, and integer L-shaped Cuts, respectively, that are added during the optimization process.
Column #BBN reports the average number of enumeration nodes explored within the running time.  



Fig. 7. Influence of the special enhancement strategies on the algorithmic performance (group US, n ¼ 250).
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It is remarkable that (cf. column #(i-LS)), integer L-shaped cuts are added in very rare cases. In a more detailed analysis
we observed that whenever the current solution ð~x0; ~y0Þ was integer, usually (l-LS) were able to close the gap, so no attempt
was made to find integer L-shaped cuts.

The number of explored enumeration nodes (column #BBN) clearly shows that increasing the size of the instance and the
number of scenarios produces a slowdown in the exploration of the search-space. This happens because more time is spent
at each node solving the separation problem and performing the algorithmic enhancements described before.

The effectiveness of the proposed solution approach on the 2034 instances derived from group US is shown in Fig. 8. The
performance profile of the attained gaps for different values of jKj in Fig. 8(a) shows that (regardless of the value of jKj): (i)
about 65% of the instances are solved to optimality or a very small gap is reached, (ii) for almost 80% of the instances a gap of
less than 1.5% is reached, and (iii) for almost all, expect 5 instances, the attained gap is less than 4.7%. As for the running
times, Fig. 8(b) shows that: (i) between 20% and 40% of the instances can be solved in less than 60 s, (ii) about 50% can
be solved in less than 300 s, and (iii) for almost 45% of the instances the time limit is reached. Detailed performance profiles
of the attained gaps for different values of n are provided in the appendix (Fig. 10). The observed behavior is not very dif-
ferent in the case of the group Germany (Fig. 11 in the appendix), nor in the case of the group ND-I (Fig. 12 in the appendix).

Recall that for our branch-and-cut approach we have disabled some CPLEX features (pre-processing, heuristics and
general-purpose cutting planes) in order to get a better assessment of the proposed techniques. For the sake of completeness,
we have performed some experiments where all CPLEX parameters are set to their default values. In Table 6 in the appendix
we report statistics on the algorithmic performance when solving instances with n ¼ 100 of groups US, Germany and ND-I

with the default CPLEX settings. Comparing this table with Table 2, one observes that enabling these CPLEX features does not
Fig. 8. Performance profile of attained gaps and running times for different number of scenarios (group US, 2034 instances).  
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produce any improvement on the algorithmic performance; moreover, it actually deteriorates it: fewer instances are solved
to optimality within the same time limit and the attained gaps are slightly worse.

As mentioned above, formulation (1) and (2) can also be solved directly through any state-of-the-art MIP solver such as
CPLEX. Nonetheless, this straightforward strategy cannot be applied successfully, even to our smallest instances (n ¼ 100). In
Table 3 (cf. Table 7) we report statistics on the performance of CPLEX with default configuration when solving instances of
class Trans with n ¼ 100 (within the same time limit of 600 s). We observe that much less instances are solved to optimal-
ity, and the gaps of the unsolved instances can be as high as 99%(!) and average gaps can range from 17.0% to more than
60.0%. In the table we also report the number of explored enumeration nodes (#BBN) and the number of cuts added by
the solver (#CPX Cuts). What seems surprising is the small number of general-purpose cuts added during the optimization
with respect to the number of explored nodes; this means that cutting planes as those included in CPLEX are insufficient to
tackle the structure of the RRUFL (at least for the considered instances) and the lower-bound improvement mainly relies on
branching.

 

 

4.4. Dis instances: solutions and algorithmic performance

Solutions. Dis class is intended to represent situations of natural disasters in which different number of cities are likely to
need assistance (t ¼ f0:25;0:50;0:75g), few cities are in conditions to host a facility, a portion of the allocation links can be
heavily damaged (f ¼ f0:00;0:10;0:25;0:50g) and the attractiveness of a location depends more on its position than on its
economical characteristics.

As in the case of Trans instances, the structure of the first-stage solutions strongly depends on the instance definition.
Fig. 9 displays solutions of instances of group Philippines considering different combinations of ðt; f Þ. We can observe that
for a fixed value of t (Fig. 9(a)–(c) for t ¼ 0:50 and Fig. 9(d)–(f) for t ¼ 0:75), a larger first-stage component is defined when
increasing f, i.e., more facilities are opened and more allocations are defined. This behavior is expected due to the dramatic
effect produced by the presence of road failures; it is better to define robust first-stage allocations to prevent from very high
transportation times in the second stage.

Note that, from a practical point of view, if a given city i is assigned in the first stage to a facility j, the actual allocation cost
(the one incurred when assistance comes from j to i after the disaster) will still be scenario dependent (chosen roads might
be damaged in any case). However, this first-stage decision can help to decision makers (i) to define preventive plans to
endure some roads, (ii) to have in mind how to access the affected areas regardless of the presence of failures, and (iii) to
make sure that if a given allocation should be re-defined, this re-allocation will be economically efficient (due to the
worst-case emphasis of the model).

Fig. 9(a)–(f) have been produced by transforming our solutions into kml files that can be displayed with the Google Earth
free software (see Google Earth, 2014).

In Table 4 (equivalent to Table 2) additional information on solutions’ structure is provided. As in the case of Trans
instances, we can see that the number of scenarios does not change the average values of jy0j and jx0j, which again shows
that our model tackles uncertainty in a way that cost structure influences more the characteristics of first-stage solutions
than the uncertainty. The values reported in columns DOPT% and Dx% reinforce the previous observation: There is an
important increment of the total cost of the solutions (DOPT%) when increasing jKj but most of this increment is due to
the second-stage component (Dx%). The marginal difference between Dx% and DOPT% is due to the robustness cost of
the corresponding first-stage solutions. Note that the values of DOPT% and Dx% are one order of magnitude higher than
those obtained for Trans; this can be explained by the nature of the Dis instances, where interdiction of transportation links
induces higher allocation/re-allocation costs in the second stage.

Further insights on the influence of the cost structure on the first-stage solutions are shown in the appendix: Figs. 13 and
14 (Bangladesh group), Figs. 16 and 17 (Philippines group), and Figs. 19 and 20 (ND-II group). From these figures we
Table 3
Algorithmic performance of CPLEX when solving the compact model. Trans instances with n ¼ 100 (256 instances per row).

Group k Opt. times Attained gaps B&C indicators

Ave. #Opt Ave. max #Nopt #BBN #CPX Cuts

US 25 17.43 256 – – 0 213 14
50 36.08 237 39.56 84.34 19 182 26
75 54.16 221 62.72 99.1 35 190 22

Ger 25 14.20 256 – – 0 72 9
50 41.87 244 17.8 42.85 12 133 19
75 66.25 206 31.6 98.01 50 269 25

ND-I 25 7.72 253 – – 0 138 13
50 38.10 256 – – 0 131 17
75 54.40 228 49.48 99.63 28 175 31

 



Fig. 9. Solutions considering different combinations of ðt; f Þ (group Philippines, r3;r4 ¼ 1; jKj ¼ 50).

Table 4
Statistics of solution characteristics and algorithmic performance for different values of jKj (groups Bangladesh, Philippines and ND-II).

Type n jKj Time (s) Gap (%) jy0j jx0j DOPT% Dx% #(l-LS) #(l-LS)MH #(i-LS) #BBN #Opt

Bang 128 25 208.84 0.73 3 10 0.00 0.00 90 3 0 1548 54
50 308.63 1.81 3 11 23.50 23.60 138 3 0 1128 42
75 293.61 1.75 3 10 29.69 30.82 145 3 0 665 43

Phi 100 25 169.79 0.31 3 12 0.00 0.00 120 3 0 2126 61
50 265.63 1.53 3 12 29.30 32.15 119 2 0 1872 52
75 341.57 2.90 3 14 34.83 36.86 153 2 0 1480 39

ND 100 25 219.90 0.56 3 8 0.00 0.00 104 2 0 2661 55
50 249.05 1.74 3 7 10.39 13.05 133 2 0 1394 47
75 294.59 2.75 3 7 22.64 25.12 142 2 0 1105 39
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can see that the average values of jy0j and jx0j depend more on factors t and f (as previously shown in the examples) than on
ðr3;r4Þ (the second-stage set-up and penalty factors).

Algorithmic performance. As in the case of Trans instances, one can identify the Effort for Robustness when solving Dis

instances. From columns Time (s), Gap (%) and #Opt in Table 4 we observe that the greater the value of jKj: (i) the larger
the average running time, (ii) the greater the average attained gap, and (iii) the fewer instances are solved to optimality.
From columns #(l-LS) and #BBN, we observe that, compared with Trans instances of almost the same size, much more
(l-LS) cuts are added but also much more nodes are explored. This means that, on average, fewer cuts are added per enumer-
ation node. This can be explained by the increase of numerical instability due to the presence of coefficients with different
orders of magnitude. These differences lead to weaker or non-violated cuts. Therefore, our scenario sorting strategy inter-
rupts the cut-generation cycle and forces more branching. A similar argument applies for explaining the small amount of
heuristically generated cuts (column #(l-LS)MH) and of integer L-shaped cuts (column #(i-LS)).
 



Table 5
Running times needed for optimality and attained gaps when reaching the time limit for different values of jKj (groups Bangladesh, Philippines and ND-

II).

jKj Bangladesh-128 Philippines-100 ND-II-100

Opt. times Attained gaps Opt. times Attained gaps Opt. times Attained gaps

Ave. #Opt Ave. max #Nopt Ave. #Opt Ave. max #Nopt Ave. #Opt Ave. max #Nopt

25 78.45 54 2.92 7.43 18 92.21 61 2.04 3.93 11 102.41 55 2.38 5.09 17
50 100.51 42 4.33 9.75 30 137.03 52 5.48 15.11 20 62.38 47 5.00 9.20 25
75 86.98 43 4.33 9.94 29 122.90 39 6.32 15.60 33 36.16 39 6.00 10.87 33

Table 6
Running times needed for optimality and attained gaps when reaching the time limit for different values of n and jKjwhen enabling CPLEX Heuristics, Cuts and
Preprocessing (n ¼ 100, instances US, Germany and ND-I).

jKj US Germany ND-I

Opt. times Attained gaps Opt. times Attained gaps Opt. times Attained gaps

Ave. #Opt Ave. max #Nopt Ave. #Opt Ave. max #Nopt Ave. #Opt Ave. max #Nopt

25 22.85 244 0.06 0.10 12 17.16 253 0.03 0.07 3 38.64 238 0.26 1.04 18
50 41.95 250 0.07 0.32 6 32.66 253 0.03 0.04 3 40.80 251 0.06 0.10 5
75 54.15 246 0.08 0.60 10 59.74 245 0.05 0.13 11 52.36 238 0.09 0.29 18

Table 7
Running times needed for optimality and attained gaps when reaching the time limit for different values of n and jKj (instances US, Germany and ND-I).

n jKj US Germany ND-I

Opt. times Attained gaps Opt. times Attained gaps Opt. times Attained gaps

Ave. #Opt Ave. max #Nopt Ave. #Opt Ave. max #Nopt Ave. #Opt Ave. max #Nopt

100 25 33.89 251 0.04 0.06 5 21.52 256 – – 0 37.22 256 – – 0
50 63.71 252 0.59 0.88 4 37.18 252 0.01 0.01 4 31.60 256 – – 0
75 74.23 250 0.30 0.95 6 55.83 249 0.02 0.03 7 48.10 256 – – 0

250 25 78.14 175 0.57 2.32 81 118.23 134 0.75 2.54 122 91.68 153 0.16 1.59 103
50 118.48 197 0.25 2.12 59 139.28 107 0.63 2.17 149 120.91 115 0.22 1.94 141
75 132.53 172 0.22 1.40 84 180.89 92 0.86 4.82 164 142.65 151 0.32 6.35 105

500 25 156.86 82 1.62 3.81 174 150.70 96 0.83 2.30 160 160.04 33 2.27 10.65 223
50 290.02 11 1.38 4.66 245 256.63 43 0.70 2.59 213 268.23 12 2.11 6.19 244
75 – 0 1.99 9.38 256 – 0 2.50 13.95 256 – 0 2.38 7.93 256

Fig. 10. Performance profile of attained gaps for different jKj (group US with n 2 f250;500g).
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Table 5 reports more details regarding the algorithmic performance. The results indicate that Dis instances are more dif-
ficult to solve than Trans instances. Even if the running times for reaching optimality are still quite reasonable, the attained
gaps are high (especially when considering the maximum values). The additional difficulty of these instances is explained by 



Fig. 11. Performance profile of attained gaps and running times for different jKj (group Germany).

Fig. 12. Performance profile of attained gaps and running times for different jKj (group ND-I group).

Fig. 13. Box plot of attained gaps for different combinations of ðt; f Þ (group Bangladesh, under each box-plot the number of optimally solved instances and
the average values of ðjy0j; jx0jÞ are reported).
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Fig. 14. Box plot of attained gaps for different combinations of ðr3;r4Þ (group Bangladesh, under each box-plot the number of optimally solved instances
and the average values of ðjy0j; jx0jÞ are reported).
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their more complex structure entailed by the presence of link failures (that can be very different from one scenario to
another).

The relatively high average gaps, according to Table 5, are a consequence of the presence of a few outliers with high gaps.
The performance profiles of the gaps attained for different jKj are shown in the appendix in Figs. 15, 18, and 21 correspond-
ing to groups Bangladesh, Philippines, and ND-II respectively. One can conclude that in all cases the following pattern
is observed: (i) for at least 60% of the instances optimality or a very small gap is reached (regardless of the value of jKj); (ii)
for 75–85% of the instances a gap below 5% is attained (regardless of the value of jKj); (iii) for at most 5% of the instances gaps
above 10% are obtained (only for jKj ¼ f50;75g).

The previously described instability of the attained gaps and their dependence on the instance structure is clearly
depicted in the complementary charts provided in the appendix. One observes that factors t and f (Figs. 13, 16 and 19) have
more influence on the stability of the algorithmic performance, than factors r3 and r4 (Figs. 14, 17 and 20). These results
respond to two facts: (i) parameter t plays an important role in the very structure of the instance (it defines the size of
R), and (ii) parameter f produces a similar effect since it defines the number of connecting links that become almost unavail-
able (their transportation times become 100 times larger).
5. Conclusions

The UFL is a classical combinatorial optimization problem of an enormous practical and theoretical relevance. Its simplic-
ity and versatility makes it suitable to model different problems of real-world decision making. Nonetheless, when truly
Fig. 15. Performance profile of attained gaps for different number of scenarios (group Bangladesh).  
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implementable solutions are sought, the consideration of uncertainty is unavoidable. For the UFL under different sources of
uncertainty, we applied a new recoverable robust optimization approach (RRO) that falls within the framework of 2SRO. In
this new concept, a robust solution is sought such that it can be recovered (i.e., rendered feasible using a limited set of recov-
ery actions) once the uncertainty is revealed in a second stage. For the resulting problem, RRUFL, we designed a
branch-and-cut framework based on Benders decomposition and we included several tailored enhancements to improve
its performance.

The proposed algorithm was extensively tested on more than 7500 realistic instances divided into two groups. The results
show the efficacy of the algorithm in finding good quality solutions within a short running time. Moreover, the results
demonstrate the strong influence of the instance cost structure on both the algorithmic performance and solution charac-
teristics. Our computational study also illustrates how robustness and recoverability are expressed in the structure of opti-
mal solutions, and it demonstrates the benefits of RRO when compared to a RO model without recovery.

Finally, the obtained results indicate that solving the RRUFL is a not an easy task for general purpose MIP solvers. To cope
with the size of realistic instances, it is inevitable to use more sophisticated decomposition techniques, like the one pre-
sented in this study.

 

 

Fig. 16. Box plot of attained gaps for different combinations of ðt; f Þ (group Philippines, under each box-plot the number of optimally solved instances
and the average values of ðjy0j; jx0jÞ are reported).

Fig. 17. Box plot of attained gaps for different combinations of ðr3;r4Þ (group Philippines, under each box-plot the number of optimally solved instances
and the average values of ðjy0j; jx0jÞ are reported).  
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Appendix A

A.1. Additional results

In our default runs of the proposed branch-and-cut approach we have disabled some CPLEX features (pre-processing,
heuristics and general-purpose cutting planes) in order to get a better assessment of the proposed techniques. For the sake
of completeness, we have performed some experiments where all CPLEX parameters are set to their default values. In Table 6
we report statistics on the algorithmic performance when solving instances with n ¼ 100 of groups US, Germany and ND-I

with the default CPLEX settings.
Fig. 18. Performance profile of attained gaps for different number of scenarios (group Philippines).

Fig. 19. Box plot of attained gaps for different combinations of ðt; f Þ (group ND-II, under each box-plot the number of optimally solved instances and the
average values of ðjy0j; jx0jÞ are reported).  
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A.2. Additional performance profiles of Trans instances

See Figs. 10–12.

 

 

A.3. Detailed results for Bangladesh instances

See Figs. 13–15.
A.4. Detailed results for Philippines instances

See Figs. 16–18.
A.5. Detailed results for ND-II instances

See Figs. 19–21.
Fig. 20. Box plot of attained gaps for different combinations of ðr3;r4Þ (group ND-II, under each box-plot the number of optimally solved instances and
the average values of ðjy0j; jx0jÞ are reported).

Fig. 21. Performance profile of attained gaps for different number of scenarios (group ND-II).  
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