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A B S T R A C T

Purpose: This study investigated the potentiality of ultrasound imaging to classify hot and cold thyroid nodules
on the basis of textural and morphological analysis.
Methods: In this research, 42 hypo (hot) and 42 hyper-function (cold) thyroid nodules were evaluated through
the proposed method of computer aided diagnosis (CAD) system. To discover the difference between hot and
cold nodules, 49 sonographic features (9 morphological, 40 textural) were extracted. A support vector machine
classifier was utilized for the classification of LNs based on their extracted features.
Results: In the training set data, a combination of morphological and textural features represented the best
performance with area under the receiver operating characteristic curve (AUC) of 0.992. Upon testing the data
set, the proposed model could classify the hot and cold thyroid nodules with an AUC of 0.948.
Conclusions: CAD method based on textural and morphological features is capable of distinguishing between hot
from cold nodules via 2-Dimensional sonography. Therefore, it can be used as a supplementary technique in
daily clinical practices to improve the radiologists’ understanding of conventional ultrasound imaging for no-
dules characterization.

1. Introduction

A thyroid nodule can be formed as a result of the growth of an
abnormal cell within the thyroid gland which may appear as a non-
palpable or palpable mass. According to the national cancer institute,
56.870 new cases and 2.010 thyroid cancer related deaths occurred in
2017. There has been an increase in death rates at an average rate of
0.7% each year over 2005–2014 [1]. Serum thyrotropin (TSH) should
be obtained as an initial evaluation process from all patients diagnosed
with a thyroid nodule. For patients with a subnormal TSH level, before
any further diagnostic procedures like fine needle aspiration (FNA), a
radionuclide thyroid scan should be performed. The scan result can be
hyperfunctioning (hot), isofunctioning (warm) or nonfunctioning (cold)
(i.e., tracer uptake is less, equal or greater than the surrounding normal
thyroid tissue respectively). Although hot nodules rarely represent

malignancy, 3–15% of cold nodules have been reported as malignant
[2–4]. Therefore, radionuclide scan plays a critical role in the evalua-
tion of thyroid nodule in patients with low TSH level. For other cases
with high TSH level, FNA should be performed due to the high risk of
malignancy [3].

According to the American Thyroid Association (ATA), ultrasound is
the main and preferred imaging modalities for thyroid nodule evalua-
tion, while if a thyroid nodule is detected incidentally on any other
imaging modalities, for more assessment ultrasonography should be
performed [3]. An ultrasound image reflects diverse gray-level in-
tensities and different tissues have different textures. Although there is
no precise or mathematical definition of texture, it is simply conceived
by the human eye. Image texture can be described by spatial variations
in pixel intensity, patterns (homogen or heterogen, smooth, or coarse)
of objects within an image. In other words, different patterns of echo
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from a nodule can form different textures within an ultrasound image.
The structural abnormalities of a thyroid nodule are capable of re-
presenting different textures that can be extracted by visual inspection,
but complex patterns are difficult to interpret [5,6].

Although radionuclide scan is the standard method for evaluation of
a thyroid nodules function, its invasive, incurs health care costs and

imposes anxiety and radiation doses on the patient [7]. Today, com-
puter-aided diagnosis (CAD) systems have become an important part of
clinical duty routines to help and improve the accuracy of an initial
radiologist’s diagnosis. CAD systems have an advantage over humans
due to overcoming the limitations of human memory, fatigue, re-
producibility and ability to detect pathological changes that cannot be

Fig. 1. Three quantitative groups were used in this study: (A), Run-length matrix: the arrows indicate the direction of runs of pixels having the same value; (B), Wavelet: features
computed at five decomposition levels; and (C), Morphological based features.
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detected by the human eye [6,8]. Recently, CAD systems have been
proposed for thyroid nodules characterization in ultrasound imaging.
Many quantitative sonographic features such as morphology [9–12],
texture [10,13–18], and elastography [15,19,20] have been shown to
be useful in differentiating between benign and malignant thyroid no-
dules. The present study provides additional information relevant to the
possibility of ultrasound imaging in distinguishing hot from cold no-
dules. To the best of the authors' knowledge, no published studies have
evaluated the potential of ultrasound imaging or other imaging mod-
alities, for the classification of hot and cold thyroid nodules.

2. Patients and methods

2.1. Patients and image acquisition

Data were obtained from patients who had undergone radionuclide
thyroid scan at the Rajaie cardiovascular medical and research center.
Each patient provided written informed consent, and a local ethics
committee approval was obtained for this prospective study.

The inclusion criteria were as follows: Patients who had nodules
with a length greater than 10mm in diameter, Patients who had been
tested for serum TSH and Patients with TSH suppression level
(< 0.5 μIU/mL). The following were excluded from the study: patients
who recently had a myocardial infarction (MI), congestive heart failure
(CHF) and surgery, who recently received contrast agent, amiodarone
and pregnancy within the previous six months, who are suspected of
having thyroiditis, who had more than one nodule with a diameter
larger than 10mm and individuals who refused to sign the consent
form.

Neck ultrasonography was performed on these patients as a routine
evaluation just before radionuclide thyroid scan. Ultrasonography was
performed using the IU22 sonography system (Philips Healthcare,
Bothell, Washington, USA) equipped with a L12-5 (5–12MHz) linear
array transducer. To select the biggest cross section, all detected no-
dules were evaluated in longitudinal and transverse sections. For fur-
ther evaluation, only one image per nodule with the maximum cross
section was used. For further analysis, all ultrasound thyroid nodules
were labeled according to the radionuclide scan result.

In this study, a radionuclide thyroid scan was acquired using Infinia
Hawkeye 4 SPECT-CT (GE Medical Healthcare, Milwaukee, WI, USA)
equipped with a low-energy general propose (LEGP), parallel-hole
collimator with matrix size of 256*256 and zoom factor of 2. Imaging
was done 20min after intravenous administration of 4mCi

Tcm99 pertechnetate for 180 s (700–1000k counts per view). The 20%
symmetric window was centered on the Tcm99 140 keV photopeak. To
remove the confounder factor, all patients stopped taking Methimazole
for one week before the radionuclide thyroid scan.

2.2. Nodule segmentation and quantitative features extraction

2.2.1. Nodule segmentation
In our previous study, hybrid filter was introduced for thyroid no-

dules segmentation in ultrasound imaging. This hybrid filter contains 4
layers: 1-contrast limited adaptive histogram equalization (CLAHE); 2-
wavelet filter in “high-high” frequency channel in second level wavelet
decomposition (WletHH2); 3-probabilistic patch-based (PPB) filter and
4- Homomorphic WletHH2 (Hmp_WletHH2) filter. Through the appli-
cation of the hybrid filter, active contour can segment a thyroid nodule
with high performance and the area under the receiver operating
characteristic (ROC) curve (AUC) was 0.943. In the present study, the
proposed segmentation method is applied to the nodule segmentation
to prepare the region of interest for further features extractions.

2.2.2. Texture features
2.2.2.1. Run length matrix. In some sonographic patterns, some pixels
with same gray-level intensity was continuous in a specific direction.

The run length matrix (RLM) based features can describe these
distributions. In other words, RLM p(i, j) represent runs of length j of
pixels having the same gray-level value i in the nodule region (Fig. 1A).
In this regards, five quantitative features were calculated from RLM: 1-
run length nonuniformity (RLNU), 2- gray level nonuniformity (GLNU),
3- short run emphasis (SRE), 4- long run emphasis (LRE), and 5-
fraction of the image in runs (Fraction). Each of these five features are
calculated in four directions: vertical, horizontal, 45°, and 135°. Hence,
twenty RLM texture features were included in this study.

2.2.2.2. Wavelet. Wavelet is a robust technique for texture analysis due
to the analysis and localized natural nonstationary signals in both
spatial and frequency domains. Wavelet can decompose the signal of an
image into successive levels using independent spatially oriented
frequency channels in a pyramidal structure. In this regards, sets of
high-pass (H) and low-pass (L) filters are employed to increase
frequency resolution and produce wavelet coefficients at each level
and direction. In each decomposition level, filters were applied for all
rows (horizontal direction) and then for all columns (vertical direction)
of an image. Hence, at n-th decomposition levels, the output contained
four different subband images with their corresponding wavelet
coefficients given in parentheses: one approximation subband image
(aLL

n ) and sets of detailed subband images (dHH
n , dHL

n and dLH
n ). The aLL

n is
used for further transformation at the next levels (Fig. 1B). The energy
of each of these wavelet coefficients are measured as follows:

∑
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−

E
d

N
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Where E and N denote energy and number of pixel in ROI [13]. In
this study, the energy of wavelet coefficients at five levels were com-
puted. Hence, 20 wavelet features were used for texture analysis
(Fig. 1B).

2.2.3. Morphological features
Based on literature, there is a difference in the morphology of be-

nign and malignant thyroid nodules. Generally, a malignant nodule has
an irregular margin, taller-than-wide shape, smaller size and greater
Aspect_Ratio [11,12,21–23]. The study hypothesis is that there may be
some variations in morphological features between hot and cold thyroid
nodules. After nodule segmentation, various morphological parameters
can be calculated. In this study, nine morphological parameters were
calculated to find the differences between hot and cold nodules. These
nine parameters included the following: 1- Area: return number of
pixels within nodule, 2- Compactness: the ratio of perimeter square
(perimeter2) to area of nodule, 3- Convexity: the ratio of perimeter to
convex perimeter of nodule (convex perimeter defined as perimeter of
smallest convex polygon that can contain nodule), 4- Extent: the ratio of
major to minor axis length of the ellipse that circumscribe the nodule,
5- Ellipticity: the ratio of the nodule area to the area of the ellipse which
circumscribe the nodule, 6- Circularity: the ratio of the area of the
nodule to the area of the circle that circumscribe the nodule, 7- As-
pect_ratio: the ratio of the maximum to the minimum diameter of the
nodule, 8- Form_factor: the ratio of the nodule area to the bounding box
area, and 9- Square_factor: the ratio of the width to the length of the
circumscribed rectangle of the nodule. Fig. 1C presents an illustration of
these morphological parameters.

2.3. Statistical analysis and classification

All quantitative data were tested for normality by the
Kolmogorov–Smirnov test. The two tailed independent samples t-test/
Mann–Whitney U test were applied for comparisons of quantitative
parameters between hot and cold nodules. The sex distribution between
the two groups, was evaluated using Fisher's exact and Chi square tests.
A P-value less than 0.05 was considered significant.
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Support vector machine (SVM) uses all significant quantitative
features to classify the two groups. SVM is an interesting and powerful
supervised machine learning approach for data classification and
modeling. SVM defines optimal hyperplane with maximum margin by
using labeled training data and support vectors from feature space. In
this condition, new data can be categorized according to hyperplane
[24]. After training and creating the SVM model, new samples can be
assigned into one category. In addition to linear classification, SVM can
solve a non-linear problem using a “kernel trick”. In this technique, the
feature space was mapped into a higher dimension to provide a linear
classification. Cross-validation testing is a useful method to prevent
over-fitting and to improve classifier generalizability. The 10-fold cross-
validation is used for model building. In this case, feature parameters
are randomly divided into 10 folds with equal size. Thereafter, nine
folds are used for training data and one fold is used for testing. This
procedure is continued while all folds are used for testing. Almost 70%
of patients (with 50–50 distribution) were randomly selected for
training and other 30% of the patients (with 50–50 distribution) were
used as a new and blind data to test the final model.

To compare diagnostic performances, five well-known indexes were
calculated: accuracy (ACC), sensitivity (SEN), specificity (SPC), positive
predictive value (PPV), and negative predictive value (NPV). In this
study, hot and cold nodules were considered as negative and positive
cases, respectively. The AUC was also calculated to evaluate the overall
performance of the proposed method [25]. ROC analysis was performed
using the SPSS software (IBM SPSS Statistics 19 for Windows, IBM Inc.,
Armonk, NY, USA) and AUC values were estimated beyond the 95%
confidence level. The steps of the proposed CAD process are presented
in Fig. 2.

3. Results

3.1. Demographic data of patients

In this study, 84 patients (51 female, 33 male) with proven radio-
nuclide scan results were considered. Of these 84 patients, hyper-
functioning nodules (hot nodules) existed in 42 patients (25 female, 17
male) and 42 patients (26 female, 16 male) had only hypo-functioning
nodules (cold nodules). There was no significant difference between hot
and cold nodules in terms of gender (p= 0.823). Also, the mean age
(mean ± SD) of the hot and cold groups were 51.67 ± 13.41 and

54.55 ± 12.43 respectively, but the difference did not reach a level of
significance (P=0.310). Since the differences in gender and age of
patients between the two groups (hot and cold) were not statistically
significant, these parameters were not determined as confounding fac-
tors in quantitative extracted features from images. All patients with
cold thyroid nodules underwent the FNA and positive FNA results were
found in 8 patients (5 female and 3 male).

Out of 84patients, 60patients (30 hot and 30 cold nodules) were
randomly selected for training and the other 24 patients (12 hot and 12
cold nodules) were taken as the new and blind data for testing the final
model. Fig. 3 shows the sample ultrasound image of hot and cold no-
dules with the corresponding scintigraphic image.

3.2. Distributions of textural and morphological features in the two groups

Table 1 presents the distribution characteristics of quantitative
features in patients. Fig. 4A–C presents the ROC curves of the individual
features. From all 40 textural features, there were 25 significant dif-
ferences between hot and cold nodules. In this case, GLNU in the hor-
izontal direction (Horz_GLNU), Horz_LRE, Horz_SRE and Horz_Fraction,
RLNU in the vertical direction (Vert_RLNU), Vert_GLNU, Vert_SRE and
Vert_Fraction, RLNU in 45° direction (45Dgr_RLNU), 45Dgr_GLNU,
45Dgr_SRE and 45Dgr_Fraction, RLNU in 135° direction
(135Dgr_RLNU), 135Dgr_GLNU, 135Dgr_SRE and 135Dgr_Fraction form
RLM features; and “low-high” energy components in the first level
wavelet decomposition (WavEnLH_s-1), “high- low” energy components
in the first, second, 3rd, 4th and 5th level wavelet decomposition
(WavEnHL_s-1, WavEnHL_s-2, WavEnHL_s-3, WavEnHL_s-4, and Wa-
vEnHL_s-5), “high- high” energy components in the first, second, 3rd
and 5th level wavelet decomposition (WavEnHH_s-1, WavEnHH_s-2,
and WavEnHL_s-3) from wavelet are significant features (Table 1).
Table 1 presents the mean value of all significant features in hot and
cold groups.

It was found that among the nine morphological features, only
Compactness and Form_factor did not have any significant difference
between hot and cold nodules. Seven significant features are as follows:
Area, Convexity, Extent, Ellipticity, Circularity, Aspect_ratio and
Square_factor (Table 1).

Fig. 2. Overview of proposed method process on ultrasound images.
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3.3. Classification performance between hot and cold nodules

Using SVM, the all significant features between the two groups were
implemented for multi-parameter analysis. Table 2 shows the diag-
nostic performance of SVM for classifying and making comparisons
between hot and cold nodules for each feature type and the combina-
tion with each other. Also, Fig. 4D presents the ROC curves of the SVM
model on the same graph for each feature groups so as to compare the
discriminating power of classification.

Considering the feature classes, textural features can lead to AUC of
0.943 which corresponds to 93.33% sensitivity, 96.67% specificity and
95.00% accuracy in the classification of hot and cold nodules.
Morphological features can distinguish hot from cold nodules with AUC
of 0.885, corresponding to sensitivity of 86.67%, specificity of 90% and
accuracy of 88.33%. The combination of morphological and textural
feature groups represented the highest performance in terms of AUC,
sensitivity, specificity and accuracy of 0.992, 100%, 96.67% and
98.33% respectively.

After 10-fold cross-validation, the final model was tested with 24
new cases (12 hot and 12 cold) represents high performance with AUC
of 0.948 which corresponds to sensitivity, specificity and accuracy of
91.67%.

4. Discussion

To improve the accuracy of physician's initial diagnoses and
therapy, discriminating between hot and cold thyroid nodules is re-
garded as one of the most critical factors. The primary objective of this
study was to evaluate the morphological and textural sonographic
features ability, a non-invasive method for identifying changes between

hot and cold thyroid nodules. The results of the current study proved
that the proposed CAD system can differentiate between hot and cold
thyroid nodules with high accuracy.

The results showed that the combination of morphological and
textural features had more discriminative power than those features
alone according to the AUC (combination vs. textural vs. morphological
features: 0.992 vs. 0.943 vs. 0.885). It can be concluded that these two
feature classes are complementary and their fusion can improve the
performance of the classification task. Hence, in the data of this re-
search, where the best results were driven in combination features with
an AUC of 0.992 which corresponds to a sensitivity of 100%, a speci-
ficity of 96.67% and accuracy of 98.33%. Testing the final validated
model indicated that this model can classify blind hot and cold nodules
with high performance with AUC of 0.948, sensitivity, specificity and
accuracy of 91.67%.

Since the last decade, the CAD system has been employed for the
classification of benign and malignant thyroid nodules using ultrasound
imaging. No study has been found with the aim of classifying hot and
cold nodules. Ultrasound imaging includes many kinds of features, such
as textural, elastographic and morphological features which are useful
for classification tasks. Through histogram and gray-level co-occurrence
matrix (COM) features, Kim et al. [15] was able to classify benign and
malignant thyroid nodules with AUC 0f 0.809. In order to distinguish
between benign and malignant thyroid nodules, RLM and COM were
extracted by Chang et al. [16] this resulted to an accuracy of 83.10% for
both texture groups. Acharya et al. [17] employed Gabor transform to
extract quantitative texture feature for classification of benign and
malignant thyroid nodules. In this regard, 94.3% accuracy was
achieved. Also, in our previous studies, benign and malignant thyroid
nodules were classified with AUC of 1 and 0.9722 by using wavelet and

Fig. 3. Sample image of (A) hot and (B) cold nodule Scintigraphic and their corresponding ultrasound images were located at top and bottom of figure.
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combination groups of texture features, respectively [13,14].
Ultrasound elastography is a non-invasive technique, capable of

displaying tissue deformation caused by compression [26]. Further-
more, in several studies, ultrasound elastography has been used to
classify benign and malignant thyroid nodules. Through real-time
elastography, Sui et al. [19] were able to assess stiffness and classify
benign and malignant thyroid nodules with a sensitivity, specificity,
accuracy and AUC of 88.30%, 88.37%, 83.49%, and 0.863 respectively.
Zhang et al. [20] were able to assess stiffness by using strain elasto-
graphy, virtual touch tissue imaging and acoustic radiation force im-
pulse (ARFI) Imaging. They indicated that thyroid nodules, after mea-
suring shear-wave velocity (SWV) from ARFI imaging, can be classified
with higher performance of which AUC, sensitivity, specificity, and
accuracy were 0.869, 78.18%, 83.51%, and 81.58%, respectively.

Margin irregularity, symmetry, as well as the surface shape of a
thyroid nodule are described by morphological features. In this regard,
Sui et al. [19] indicated that malignant nodules have higher aspect ratio
compared to benign nodules (P < 0.001). However, there was no dif-
ference between the nodules in terms of margin regularity (P= 0.329).

On the other hand, Ma et al. [11] achieved the opposite result. They
showed that margin irregularity as well as oval shape are more common
in malignant nodules with 84% Sensitivity and 66.7% specificity
(P < 0.05). Also Xia et al. [27] proved that irregular margin was more
common in malignant nodules (P < 0.001). In Wu et al.’s study [12],
benign nodules were significantly larger than malignant nodules but
taller-than-wide shape was more common in malignant nodules. Also
Nam et al. [28] indicated that parallel shapes are more common in
benign nodules compared to malignant nodules (P < 0.001).

The aforementioned studies aimed to diagnose benign and malig-
nant thyroid nodules. But no study has tested the validity of imaging
modalities in the diagnosis of hot from cold nodules. However, for the
first time, in the present study, the differences between hot and cold
thyroid nodules were analyzed through the use of quantitative sono-
graphic features. Consequently, a good classification was presented by
these features. Accordingly, radionuclide thyroid imaging can be
avoided in patients with uncertain nodule function, if this model is
utilized for their diagnoses.

In textural features groups in order to AUC, wavelet features had a

Table 1
Main textural and morphological characteristics data of hot and cold thyroid nodules.

Group Parameter Hot Cold P-value AUC
Mean ± SD

RLM Horz_RLNU 7531.618 ± 1181.667 9726.842 ± 1208.318 0.199 –
Horz_GLNU 642.268 ± 93.135 1149.612 ± 137.871 0.003 0.726 (0.582, 0.869)
Horz_LRE 2.931 ± 0.330 5.738 ± 0.546 <0.001 0.860 (0.764, 0.956)
Horz_SRE 0.793 ± 0.007 0.688 ± 0.014 <0.001 0.877 (0.793, 0.960)
Horz_Fraction 0.718 ± 0.011 0.5761 ± 0.016 <0.001 0.888 (0.803, 0.972)
Vert_RLNU 9731 ± 1494.621 19752.416 ± 2443.191 0.002 0.733 (0.591, 0.876)
Vert_GLNU 717.846 ± 103.461 1610.684 ± 202.203 < 0.001 0.749 (0.610, 0.888)
Vert_LRE 2.049 ± 0.148 2.529 ± 0.278 0.133 –
Vert_SRE 0.852 ± 0.005 0.832 ± 0.007 0.022 0.702 (0.561, 0.844)
Vert_Fraction 0.800 ± 0.009 0.768 ± 0.010 0.023 0.700 (0.557, 0.843)
45Dgr_RLNU 10510.044 ± 1595.274 21017.426 ± 2583.022 0.001 0.730 (0.588, 0.872)
45Dgr_GLNU 738.833 ± 105.586 1656.793 ± 206.955 < 0.001 0.752 (0.614, 0.891)
45Dgr_LRE 1.842 ± 0.127 2.292 ± 0.209 0.071 –
45Dgr_SRE 0.871 ± 0.004 0.8431 ± 0.006 0.001 0.761 (0.628, 0.895)
45Dgr_Fraction 0.827 ± 0.008 0.786 ± 0.009 0.001 0.757 (0.619, 0.895)
135Dgr_RLNU 10548.807 ± 1602.631 21055.906 ± 2581.413 0.001 0.729 (0.587, 0.871)
135Dgr_GLNU 741.193 ± 106.185 1655.882 ± 207.096 0.001 0.751 (0.612, 0.890)
135Dgr_LRE 1.826 ± 0.116 2.264 ± 0.204 0.067 –
135Dgr_SRE 0.871 ± 0.005 0.844 ± 0.006 0.001 0.753 (0.616, 0.890)
135Dgr_Fraction 0.828 ± 0.008 0.787 ± 0.009 0.001 0.744 (0.604, 0.885)

Wavelet WavEnLL_s-1 7109.997 ± 402.655 6134.101 ± 437.337 0.106 –
WavEnLH_s-1 19.644 ± 1.222 14.883 ± 1.355 0.004 0.714 (0.576, 0.849)
WavEnHL_s-1 7.650 ± 0.4150 3.394 ± 0.334 <0.001 0.904 (0.837, 0.972)
WavEnHH_s-1 1.654 ± 0.156 0.707 ± 0.161 <0.001 0.824 (0.701, 0.948)
WavEnLL_s-2 7069.448 ± 401.043 6080.988 ± 433.867 0.100 –
WavEnLH_s-2 33.252 ± 1.431 29.794 ± 2.016 0.167 –
WavEnHL_s-2 15.556 ± 1.001 8.280 ± 0.724 <0.001 0.874 (0.786, 0.963)
WavEnHH_s-2 5.792 ± 0.400 2.583 ± 0.320 <0.001 0.877 (0.786, 0.968)
WavEnLL_s-3 7043.601 ± 396.721 6031.438 ± 433.873 0.090 –
WavEnLH_s-3 43.069 ± 2.374 43.632 ± 2.901 0.881 –
WavEnHL_s-3 20.240 ± 1.273 15.497 ± 1.377 0.014 0.699 (0.563, 0.834)
WavEnHH_s-3 10.612 ± 0.998 8.755 ± 1.253 0.001 0.746 (0.613, 0.878)
WavEnLL_s-4 6004.900 ± 437.584 7035.548 ± 400.673 0.088 –
WavEnLH_s-4 47.331 ± 2.926 47.054 ± 5.062 0.433 –
WavEnHL_s-4 25.662 ± 1.580 19.615 ± 1.711 0.012 0.674 (0.538, 0.811)
WavEnHH_s-4 9.889 ± 0.680 9.759 ± 0.901 0.909 –
WavEnLL_s-5 7028.542 ± 382.304 6193.617 ± 491.928 0.185 –
WavEnLH_s-5 58.127 ± 6.123 102.671 ± 28.198 0.657 –
WavEnHL_s-5 36.194 ± 3.462 25.456 ± 3.283 0.005 0.713 (0.682, 0.844)
WavEnHH_s-5 13.170 ± 0.884 11.491 ± 1.199 0.264

Morphology Area 56614.467 ± 15174.938 66493.567 ± 19390.619 0.032 0.659 (0.518, 0.799)
Compactness 103.867 ± 8.143 106.6784 ± 8.432 0.160 –
Convexity 2.326 ± 0.134 2.574 ± 0.132 <0.001 0.889 (0.809, 0.969)
Extent 1.466 ± 0.114 1.547 ± 0.148 0.021 0.682 (0.544, 0.821)
Ellipticity 0.631 ± 0.052 0.696 ± 0.095 0.012 0.689 (0.552, 0.825)
Circularity 0.609 ± 0.062 0.524 ± 0.067 <0.001 0.814 (0.707, 0.922)
Aspect_ratio 1.323 ± 0.136 1.808 ± 0.395 <0.001 0.890 (0.818, 0.961)
Form_factor 0.735 ± 0.085 0.756 ± 0.071 0.315 –
Square_factor 1.239 ± 0.128 1.738 ± 0.329 <0.001 0.861 (0.812, 0.890)
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higher performance than the RLM features to characterize hot and cold
nodules. The values of the best features in wavelet and RLM features
were 0.904 (WavEnHL_s-1) and 0.888 (Horz_Fraction), respectively.
From the nine morphological features extracted in this study, Area
evaluates the size of nodules, Compactness and Convexity measured the
irregularity of nodule boundaries; Extent, Aspect_ratio, Form_factor and
Square_factor described the extension of nodule shape, while Ellipticity
and Circularity measure the roundness of nodules. Consequently, hot

nodules have a circular shape and smaller area, while cold nodules have
an irregular boundary, higher extent value and an oval shape. In as-
sessing boundary irregularity, Convexity has higher accuracy than
Compactness while there was no significant difference between hot and
cold nodules in the term of Compactness but Convexity reached a sig-
nificant level. One of the main reasons for this is that in Convexity
parameter, two perimeter and convex perimeter were compared. This
can lead to the monitoring of irregularity with the highest accuracy.

Fig. 4. ROC curves of individual Run-length matrix (A); Wavelet (B); Morphological based features (C) and combination features (D).

Table 2
Diagnostic performance of the proposed multi parameter analysis for classification of hot and cold thyroid nodules.

Groups SEN(%) SPC(%) ACC(%) PPV(%) NPV(%) AUC valuea Correct Classification

Train Textural Features 93.33 96.67 95 96.55 93.55 0.943 (0.886, 0.999) 57/60 [95.00%]
Morphological Features 86.67 90 88.33 89.65 87.1 0.885 (0.799, 0.971) 53/60 [88.33%]

Test Morphological+ Texture Features 100 96.67 98.33 96.67 100 0.992 (0.978, 1.000) 59/60 [98.33%]
91.67 91.67 91.67 91.67 91.67 0.948 (0.874, 1.000) 22/24 [91.67%]

SEN= sensitivity; SPC= specificity; ACC= accuracy; PPV=positive predictive value; NPV=negative predictive value; Az= area under ROC curve.
a Numbers in parentheses are 95% confidence intervals.
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Hence, for further morphological mass analysis especially in the breast,
lymph node and thyroid, Convexity is recommended instead of
Compactness for evaluating irregularity of boundaries.

Tcm99 , I131 and I123 are useful radionuclides for thyroid gland ima-
ging. Although iodine radionuclide is the main radionuclide for thyroid
scintigraphy, it is expensive and of low availability (because it is gen-
erated by cyclotron). In this way, Tcm99 is introduced as an analogue of
iodine for thyroid imaging. It has been shown that there is no sig-
nificant difference in the information provided between Tcm99 and I123 .
It also had lower radiation dose compared to iodine radionuclide ( Tcm99

vs. I123 vs. I131 : 0.013mSv vs. 1.9mSv vs. 6.6mSv) [7]. Hence, in this
study, Tcm99 was used for thyroid gland imaging and referencing for
thyroid sonography. Also, according to the “as low as reasonably
achievable” (ALARA) principle, it is desirable to reduce unnecessary
patient’s radiation dose as much as possible. The results of this study
can help the ALARA principle and indicated that quantitative sono-
graphic features have high potential to distinguish hot from cold
thyroid nodules. Also, ultrasonography is the first and primary pre-
operative choice that can provide adequate information for nodule
evaluation. Other imaging modalities such as CT and MRI are used just
to insure local invasion degree that can switch or preclude the operative
approach [29]. In addition, ultrasonography has an advantage over all
other imaging modalities because it has the potential to evaluate nodule
malignancy (CT/MRI cannot), is an objective procedure (Elastography
is not), low cost (elastography, CEUS, CT, MRI and PET is expensive),
radiation free (CT, PET and scintigraphy impose radiation dose) and has
high availability (CEUS, Elastography and PET is not routine in clinical
centers) [30]. The present results proved that ultrasonography more
than ever, is a powerful modality and can monitor thyroid nodule
function.

The main advantage of the proposed method is that no additional
time, radiation dose and costs are required in the diagnosis process.
Patients with warm (isofunctioning) nodules were excluded in this
study. Further investigations should be conducted with all types of
nodule functioning.

5. Conclusions

In conclusion, a CAD approach to the assessment of hot and cold
thyroid nodules on 2-Dimensional sonography was proposed based on
textural and morphological features. The preliminary results indicated
the usefulness of quantitative features of conventional ultrasound
imaging for the characterization of thyroid nodule function as an aux-
iliary tool during radionuclide thyroid scan in daily clinical practices.
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