
Numerical Methods

Design and Optimization - Classical Methods 43

Numerical Methods
The basic philosophy is to produce a sequence of improved
approximations to the optimum according to the
following scheme:
1. Start with an initial trial point 𝑿1.
2. Find a suitable direction 𝑺𝑖 (𝑖 = 1 to start with) that

points in the general direction of the optimum.
3. Find an appropriate step length 𝜆𝑖

∗ for movement along
the direction 𝑺𝑖 .

4. Obtain the new approximation 𝑿𝑖+1 as
𝑿𝑖+1 = 𝑿𝑖 + 𝜆𝑖

∗𝑺𝒊
5. Test whether 𝑿𝑖+1 is optimum. If 𝑿𝑖+1 is optimum, stop

the procedure. Otherwise, set a new 𝑖 = 𝑖 + 1 and
repeat step (2) onward

Numerical Methods

Design and Optimization - Classical Methods 44

Direct Root Methods

The necessary condition for 𝑓(𝜆) to have a minimum of 𝜆∗ is
that 𝑓(𝜆∗) = 0.

The direct root methods seek to find the root (or solution) of
the equation, 𝑓 (𝜆) = 0.

Three root-finding methods—the Newton, the quasi-Newton,
and the secant methods

Numerical Methods

Design and Optimization - Classical Methods 45

Newton Method

Newton’s method, which uses the Hessian of the function,
has a quadratic rate of convergence.

The basic idea of the Newton’s method is to use a second-
order Taylor’s expansion of the function about the current
design point.

𝑓 𝑿 + 𝚫𝐗 = 𝑓 𝑿 + 𝒄𝑇𝚫𝐗 +
1

2
𝚫𝐗T 𝐇𝚫𝐗

If 𝑯 is positive semidefinite, then there is a 𝚫𝐗 that gives a

global minimum for the function 𝑓 𝑿 + 𝚫𝐗

Numerical Methods

Design and Optimization - Classical Methods 46

Newton Method

The optimality conditions (
𝛿𝑓

𝛿𝒙
) for the Taylor expansion are

𝒄 + 𝑯𝚫𝐗 = 𝟎

Assuming 𝑯 to be nonsingular, we get an expression for 𝚫𝐗
as

𝒅 = 𝚫𝐗 = −𝐇−1𝐜

Which can be used to update the design variable
𝒙𝑘+1 = 𝒙𝑘 + 𝛼𝑘𝒅𝑘

Numerical Methods

Design and Optimization - Classical Methods 47

Newton Method

The Newton method was originally developed by Newton for
solving nonlinear equations and later refined by Raphson,
and hence the method is also known as Newton–Raphson
method in the literature of numerical analysis.

The method requires both the first- and second-order
derivatives of 𝑓(𝜆).

If 𝑓′′(𝜆𝑖) ≠ 0 the Newton iterative method has a powerful
(fastest) convergence property, known as quadratic
convergence.

4. If the starting point for the iterative process is not close to
the true solution 𝜆∗, the Newton iterative process might
diverge.

Numerical Methods

Design and Optimization - Classical Methods 48

Quasi-Newton Method
Newton’s method can be inefficient because it requires

calculation of
𝑛 𝑛+1

2
second-order derivatives to generate

the Hessian matrix.

Newton’s method runs into difficulties if the Hessian of the
function is singular at any iteration.

Quasi-Newton Methods generate an approximation for the
Hessian matrix or its inverse at each iteration.

Only the first derivatives of the function are used to generate
these approximations

Numerical Methods

Design and Optimization - Classical Methods 49

Quasi-Newton Method

The Hessian is approximated by using two pieces of
information:

change in design variables

change in gradient vectors

While updating, the properties of symmetry and positive
definiteness are preserved.

The DFP method, builds an approximate inverse of the
Hessian of 𝑓(𝑥) using only the first derivatives.

The BFGS method uses the approximates the Hessian of 𝑓(𝑥)

rather than its inverse in every iteration.

Numerical Methods

Design and Optimization - Classical Methods 50

Marquardt method

Marquardt (1963) suggested a modification to the direction
finding process that has the desirable features of the steepest
descent and Newton’s methods.

Far away from the solution point, the method behaves like
the steepest descent method.

Near the solution point it behaves like the Newton’s method.

With the Marquardt modification the direction is given as

𝒅𝑘 = − 𝐇k + 𝜆𝑘𝐈 𝐜k

I If the direction 𝒅𝑘 does not reduce the cost function, then 𝜆
is increased and the search direction is recomputed

Numerical Methods

Design and Optimization - Classical Methods 51

Generalized Reduced Gradient Method

In 1967, Wolfe developed the reduced gradient method
based on a simple variable elimination technique for equality
constrained problems.

The generalized reduced gradient (GRG) method is an
extension of the reduced gradient method to accommodate
nonlinear inequality constraints.

In this method, a search direction is found such that for any
small move, the current active constraints remain precisely
active.

Numerical Methods

Design and Optimization - Classical Methods 52

Generalized Reduced Gradient Method

If some active constraints are not precisely satisfied because
of nonlinearity of constraint functions, the Newton-Raphson
method is used to return to the constraint boundary.

Thus, the GRG method can be considered somewhat similar
to the gradient projection method.

Since inequality constraints can always be converted to
equalities by adding slack variables, we can form an equality
constrained NLP model.

Constrained Problems

Design and Optimization - Classical Methods 53

Penalty functions

Unconstrained optimization methods can also be used to
solve constrained design problems.

The basic idea is to construct a composite function using the
cost and constraint functions.

Using the constraint functions, it is possible to construct a
penalty function P.

The penalty function penalizes the composite function for
violation of constraints.

Constrained Problems

Design and Optimization - Classical Methods 54

Penalty functions

Unconstrained optimization methods can also be used to
solve constrained design problems.

The basic idea is to construct a composite function using the
cost and constraint functions.

Using the constraint functions, it is possible to construct a
penalty function P.

The penalty function penalizes the composite function for
violation of constraints.

Penalty and Barrier Methods
General classical constrained minimization problem

minimize 𝑓(𝒙)
subject to 𝑔(𝒙)  0

ℎ(𝒙) = 0

Penalty methods are motivated by the desire to use
unconstrained optimization techniques to solve
constrained problems.

This is achieved by either

• adding a penalty for infeasibility and forcing the solution to feasibility
and subsequent optimum, or

• adding a barrier to ensure that a feasible solution never becomes
infeasible.

Constrained Problems

Design and Optimization

Design and Optimization

Penalty and Barrier Methods:

- minimize objective as unconstrained function

- provide penalty to limit constraint violations

- magnitude of penalty varies throughout optimization

- sequential unconstrained minimization techniques

𝐹 𝒙, 𝑟𝑝 = 𝑓 𝒙 + 𝑟𝑝 𝑃(𝒙)

𝑓(𝒙) : original objective function

𝑃(𝒙) : imposed penalty function

𝑟𝑝 : scalar multiplier to determine penalty magnitude

𝑝 : unconstrained minimization number

Constrained Problems

Design and Optimization

Penalty and Barrier Methods:

𝐹 𝒙, 𝑟𝑝 = 𝑓 𝒙 + 𝑟𝑝 𝑃(𝒙)

𝑃 𝒙 = σ𝑗=1
𝑛 max 0, 𝑔𝑗 𝒙

2
+ σ𝑘=1

𝑚 [ℎ𝑘 𝒙) 2

Notes:
- if all constraints are satisfied, then 𝑃 𝒙 = 0
- penalty parameter, 𝑟𝑝 starts as a small number

but can increase with number of iterations.

- if 𝑟𝑝 is small 𝐹 𝒙, 𝑟𝑝 is easy to minimize but

yields large constraint violations
- if 𝑟𝑝 is large, constraints are all nearly satisfied

but the function is numerically ill-conditioned

Constrained Problems

