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Summary:
What: Systematic search for the “best” design.

Why: Help you to stay competitive

How:

• Build a model of the system of interest (usually the hard part)

• Model has several parameters

o Fixed 

o Others can be varied (design variables)

• Design goals are represented by an objective function.

• Design constraints are represented by constraint functions.

• Find values of the design parameters which minimize (or maximize)   
the objective function while satisfying all the constraints.
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Methods:

Introduction
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Classification of optimization problems

Classification Based on the Nature of the Equations Involved

Classification Based on the Permissible Values of the Design Variables

Classification Based on the Deterministic Nature of the Variables

Classification Based on the Existence of Constraints

Classification Based on the Nature of the Design Variables

Classification Based on the Physical Structure of the Problem

Classification Based on the Separability of the Functions

Classification Based on the Number of Objective Functions
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Objective function max or min

Introduction
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Single variable optimization with no constraints:

A single-variable optimization problem is one in which the 
value of 𝑥 = 𝑥∗ is to be found in the interval [𝑎, 𝑏] such that 𝑥∗

minimizes 𝑓(𝑥). 

Necessary Condition 

If a function 𝑓 (𝑥) is defined in the interval 𝑎 ≤ 𝑥 ≤ 𝑏 and 
has a relative minimum at 𝑥 = 𝑥∗ , where 𝑎 < 𝑥 ∗ < 𝑏, and if 
the derivative 𝑑𝑓(𝑥)/𝑑𝑥 = 𝑓′(𝑥) exists as a finite number at 
𝑥 = 𝑥∗, then 𝑓 ′(𝑥 ∗) = 0.

Non Linear Optimization
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Non Linear Optimization

Notes:

This can be proved even if 𝑥∗ is a relative maximum.

This does not say what happens if a minimum or maximum 
occurs at a point 𝑥∗ where the derivative fails to exist. 

This does not say what happens if a minimum or maximum 
occurs at an endpoint of the interval of definition of the 
function.

This does not say that the function necessarily will have a 
minimum or maximum at every point where the derivative is 
zero.
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Non Linear Optimization

Sufficient Condition 

Let 𝑓′(𝑥∗) = 𝑓′′(𝑥∗) = · · · = 𝑓𝑛−1(𝑥∗) = 0,

but 𝑓𝑛(𝑥∗) = 0. 

Then 𝑓 (𝑥∗) is 

(i) a minimum value of 𝑓(𝑥) if 𝑓𝑛(𝑥∗) > 0 and 𝑛 is even; 

(ii) a maximum value of 𝑓(𝑥) if 𝑓𝑛(𝑥∗) < 0 and 𝑛 is even; 

(iii) neither a maximum nor a minimum if 𝑛 is odd.
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Non Linear Optimization

Multivariable optimization with no constraints

Necessary Condition 

If 𝑓(𝒙) has an extreme point (maximum or minimum)

at 𝒙 = 𝒙∗ and if the first partial derivatives of 𝑓(𝒙) exist at 𝒙∗, 
then

𝛿𝑓

𝛿𝑥1
(𝒙∗) =

𝛿𝑓

𝛿𝑥2
(𝒙∗) = · · · =

𝛿𝑓

𝛿𝑥𝑛
= 0
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Non Linear Optimization

Multivariable optimization with no constraints

Sufficient Condition

A sufficient condition for a stationary point 𝒙∗ to be an 
extreme point is that the matrix of second partial derivatives 
(Hessian matrix) of 𝑓(𝒙) evaluated at 𝒙∗is: 

(i) positive definite when 𝒙∗is a relative minimum point,

and 

(ii) negative definite when 𝒙∗is a relative maximum point.
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Non Linear Optimization

Multivariable optimization with no constraints

Hessian matrix

A matrix 𝑨 will be positive definite if all its eigenvalues are 
positive; that is, all the values of 𝜆 that satisfy the 
determinantal equation |𝑨 − 𝜆𝑰| = 0 should be positive.

Similarly, the matrix [𝑨] will be negative definite if its 
eigenvalues are negative.
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Non Linear Optimization

Multivariable optimization with no constraints

To find the positive definiteness of a matrix 𝑨 of order 𝑛
involves evaluation of the determinants

The matrix 𝑨 will be positive definite if and only if all the 
values 𝐴1, 𝐴2, 𝐴3, . . . , 𝐴𝑛 are positive. The matrix 𝑨 will be 
negative definite if and only if the sign of 𝐴𝑗 is – 1 𝑗

for 𝑗 = 1, 2, . . . , 𝑛.
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Non Linear Optimization

Multivariable optimization with equality constraints
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Here m is less than or equal to n; otherwise (if m>n), the 
problem becomes overdefined and, in general, there will be no 
solution.



Method of Lagrange Mulitpliers

Multivariable optimization with equality constraints

Method of Lagrange Multipliers:

Problem with two variables and one constraint.

Minimize 𝑓 𝑥1, 𝑥2
subject to

𝑔(𝑥1, 𝑥2) = 0

For this problem, the necessary condition for the existence of 
an extreme point at

𝒙 = 𝒙∗

is
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Method of Lagrange Mulitpliers

Method of Lagrange Multipliers:

By defining a quantity 𝜆, called the Lagrange multiplier, as 

Equations can be expressed as
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Method of Lagrange Mulitpliers

Method of Lagrange Multipliers:

In addition, the constraint equation has to be satisfied at the 
extreme point, that is,

Notice that the partial derivative

has to be nonzero to be able to define λ
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Method of Lagrange Functions

Method of Lagrange Function:

The necessary conditions are more commonly generated

by constructing a function L, known as the Lagrange function, 
as

By treating L as a function of the three variables x1, x2, and  , 
the necessary conditions for its extremum are given by
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Method of Lagrange Functions

Method of Lagrange Function:

The necessary conditions are more commonly generated

by constructing a function L, known as the Lagrange function, 
as

By treating L as a function of the three variables x1, x2, and  , 
the necessary conditions for its extremum are given by
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Method of Lagrange Functions

Method of Lagrange Function:

The necessary conditions for general problem

Minimize 𝑓(𝒙)

subject to

𝑔𝑗 𝒙 = 0, 𝑗 = 1, 2, . . . , 𝑚

The Lagrange function, 𝐿, in this case is defined by introducing 
one Lagrange multiplier 𝜆𝑗 for each constraint 𝑔𝑗(𝒙) as

𝐿(𝑥1, 𝑥2, . . . , 𝑥𝑛, 𝜆1, 𝜆2, . . . , 𝜆𝑚)
= 𝑓 𝒙 + 𝜆1𝑔1 𝒙 + 𝜆2𝑔2 𝒙 +⋯+ 𝜆𝑚𝑔𝑚(𝒙)
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Method of Lagrange Functions

Method of Lagrange Function:

By treating 𝐿 as a function of the 𝑛 + 𝑚 unknowns, 

𝑥1, 𝑥2, . . . , 𝑥𝑛, 𝜆1, 𝜆2, . . . , 𝜆𝑚,

the necessary conditions for the extremum of 𝐿, which also 
correspond to the solution of the original problem are given by
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Equations represent 𝑛 + 𝑚 equations in terms 
of the 𝑛 + 𝑚 unknowns, 𝑥𝑖 and 𝜆𝑗 .



Method of Lagrange Functions

Method of Lagrange Function:
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The solution gives

The vector 𝑿∗ corresponds to the relative constrained 
minimum of 𝑓(𝑿) (sufficient conditions are to be verified) 
while the vector 𝜆∗ provides the sensitivity information.



Method of Lagrange Functions

Sufficient Condition

A sufficient condition for 𝑓(𝑿) to have a relative

minimum at 𝑿∗ is that the quadratic, 𝑄, defined by

evaluated at 𝑿 = 𝑿∗ must be positive definite for all values of 
𝑑𝑋 for which the constraints are satisfied.
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