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Lecture Assignment 8 a)

Find the dimensions of a box of largest volume that can be 
inscribed in a sphere of unit radius.

Let the origin of the Cartesian coordinate system 
𝑥1, 𝑥2, 𝑥3 be at the center of the sphere and the sides of the 
box be 2𝑥1, 2𝑥2, and 2𝑥3. 

The volume of the box is given by 

𝑓(𝑥1, 𝑥2, 𝑥3) = 8𝑥1𝑥2𝑥3
Since the corners of the box lie on the surface of the sphere 
of unit radius, x1, x2, and  x3 have to satisfy the constraint

𝑥1
2 + 𝑥2

2 + 𝑥3
2 = 1
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Lecture Assignment 8 a)

This problem has three design variables and one equality 
constraint.

The equality constraint can be used to eliminate any one of 
the design variables from the objective function

𝑥3 = 1 − 𝑥1
2 − 𝑥2

2

or

𝑓(𝑥1, 𝑥2, 𝑥3) = 8𝑥1𝑥2 1 − 𝑥1
2 − 𝑥2

2
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Lecture Assignment 8 a)

The necessary conditions for the maximum of 𝑓 give

equations can be simplified to obtain,
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Lecture Assignment 8 a)

Solving this gives

𝑥1
∗ = 𝑥2

∗ = 1/√3 and hence 𝑥3
∗ = 1/√3. 

This solution gives the maximum volume of the box as

𝑓𝑚𝑎𝑥 =
8

3 3

To find whether the solution found corresponds to a 
maximum or a minimum,  we apply the sufficiency 
conditions to 𝑓(𝑥1, 𝑥2). 
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Lecture Assignment 8 a)

The second-order partial derivatives of f at (𝑥1
∗ , 𝑥2

∗ ) are 
given by

and
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Lecture Assignment 8 a)

Since

the Hessian matrix of f is negative definite at 

(𝑥1
∗ , 𝑥2

∗ )

Hence the point (𝑥1
∗ , 𝑥2

∗ ) corresponds to 

the maximum of 𝑓.



Method of Lagrange Multipliers

Multivariable optimization with equality constraints

Method of Lagrange Multipliers:

Problem with two variables and one constraint.

Minimize 𝑓 𝑥1, 𝑥2
subject to

𝑔(𝑥1, 𝑥2) = 0

For this problem, the necessary condition for the existence of 
an extreme point at

𝒙 = 𝒙∗

is
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Method of Lagrange Multipliers

Method of Lagrange Multipliers:

By defining a quantity 𝜆, called the Lagrange multiplier, as 

Equations can be expressed as
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Method of Lagrange Multipliers

Method of Lagrange Multipliers:

In addition, the constraint equation has to be satisfied at the 
extreme point, that is,

Notice that the partial derivative

has to be nonzero to be able to define λ

Design and Optimization - Classical Methods 22



Method of Lagrange Functions

Method of Lagrange Function:

The necessary conditions are more commonly generated

by constructing a function L, known as the Lagrange function, 
as

By treating L as a function of the three variables 𝑥1, 𝑥2, and , 
the necessary conditions for its extremum are given by
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Method of Lagrange Functions

Method of Lagrange Function:

The necessary conditions are more commonly generated

by constructing a function L, known as the Lagrange function, 
as

By treating L as a function of the three variables x1, x2, and , 
the necessary conditions for its extremum are given by
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Method of Lagrange Functions

Method of Lagrange Function:

The necessary conditions for general problem

Minimize 𝑓(𝒙)

subject to

𝑔𝑗 𝒙 = 0, 𝑗 = 1, 2, . . . , 𝑚

The Lagrange function, 𝐿, in this case is defined by introducing 
one Lagrange multiplier 𝜆𝑗 for each constraint 𝑔𝑗(𝒙) as

𝐿(𝑥1, 𝑥2, . . . , 𝑥𝑛, 𝜆1, 𝜆2, . . . , 𝜆𝑚)
= 𝑓 𝒙 + 𝜆1𝑔1 𝒙 + 𝜆2𝑔2 𝒙 +⋯+ 𝜆𝑚𝑔𝑚(𝒙)

Design and Optimization - Classical Methods 25



Method of Lagrange Functions

Method of Lagrange Function:

By treating 𝐿 as a function of the 𝑛 + 𝑚 unknowns, 

𝑥1, 𝑥2, . . . , 𝑥𝑛, 𝜆1, 𝜆2, . . . , 𝜆𝑚,

the necessary conditions for the extremum of 𝐿, which also 
correspond to the solution of the original problem are given by
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Equations represent 𝑛 + 𝑚 equations in terms 
of the 𝑛 + 𝑚 unknowns, 𝑥𝑖 and 𝜆𝑗 .



Method of Lagrange Functions

Method of Lagrange Function:
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The solution gives

The vector 𝑿∗ corresponds to the relative constrained 
minimum of 𝑓(𝑿) (sufficient conditions are to be verified) 
while the vector 𝜆∗ provides the sensitivity information.
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Method of Lagrange Function
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Sufficient Condition 
A sufficient condition for 𝑓(𝑿) to have a relative minimum 
at 𝑿∗ is that the quadratic, 𝑄, defined by

evaluated at 𝑿 = 𝑿∗ must be positive definite for all values 
of 𝑑𝑿 for which the  constraints are satisfied..
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Method of Lagrange Function
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Sufficient Condition
It has been shown that a necessary condition for the quadratic 
form 𝑄, to be positive (negative) definite for all admissible 
variations 𝑑𝑿 is that each root of the polynomial 𝑧𝑖 , defined by 
the following  determinantal equation, be positive (negative), 
see next page, where, 
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Method of Lagrange Function
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Method of Lagrange Functions

Lecture Assignment #8 b

Find the dimensions of a cylindrical tin (with top and bottom) 
made up of sheet metal to maximize its volume such that the 
total surface area is equal to 𝐴0 = 24𝜋.

𝑥1 : the radius of the base

𝑥2 : the length

Maximize 𝑓 𝑥1, 𝑥2 = 𝜋𝑥1
2𝑥2

subject to 2𝜋𝑥1
2 + 2𝜋𝑥1𝑥2 = 𝐴0 = 24𝜋

The Lagrange function is:
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Method of Lagrange Functions

Lecture Assignment #8 b

Necessary conditions:
𝛿𝐿

𝛿𝑥1
= 2𝜋𝑥1𝑥2 + 4𝜋𝑥1 + 2𝜋𝜆𝑥2 = 0 ⇒ 𝜆 = −

𝑥1𝑥2

2𝑥1+𝑥2

𝛿𝐿

𝛿𝑥2
= 𝜋𝑥1

2 + 2𝜋𝜆𝑥1 ⇒ 𝜆 = −
𝑥1

2
or     𝑥1 =

1

2
𝑥2

𝛿𝐿

𝛿𝜆
= 2𝜋𝑥1

2 + 2𝜋𝑥1𝑥2 − 𝐴0 ⇒ 𝑥1
∗ =

𝐴0

6𝜋

1

2

𝑥2
∗ =

2𝐴0

3𝜋

1

2
and    𝜆∗ =

𝐴0

24𝜋

1

2

This gives the maximum value of 𝑓∗ =
𝐴0
3

54𝜋

1

2
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Method of Lagrange Functions

Lecture Assignment #8 b

Sufficiency conditions:
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Method of Lagrange Functions

Lecture Assignment #8 b

Sufficiency conditions:

that is, 272𝜋2𝑧 + 192𝜋3 = 0

This gives 𝑧 = −
12

17
𝜋

Since the value of 𝑧 is negative, the point (𝑥1
∗ , 𝑥2

∗ )

corresponds to the maximum of 𝑓 .
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Kuhn-Tucker Conditions

Multivariable optimization with inequality constraints

Minimize 𝑓(𝑋)

subject to

𝑔𝑗 (𝑿) ≤ 0, 𝑗 = 1, 2, . . . , 𝑚

The inequality constraints can be transformed to equality 
constraints by adding nonnegative slack variables, 𝑦𝑗

2

as 𝑔𝑗(𝑿) + 𝑦𝑗
2 = 0, 𝑗 = 1, 2, . . . , 𝑚

where the values of the slack variables are yet unknown. 
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Kuhn-Tucker Conditions
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Minimize 𝑓(𝑋)
subject to

𝐺𝑗 𝑿, 𝒀 = 𝑔𝑗 𝑿 + 𝑦𝑗
2 = 0 j = 1, 2, . . . ,m

where 𝒀 = 𝑦1, 𝑦2, . . . , 𝑦𝑚
𝑇 is the vector of slack variables.

This problem can be solved conveniently by the method 
of Lagrange multipliers.

where 𝝀 = {𝜆1, 𝜆2, …, 𝜆𝑚}𝑇 , is the vector of 
Lagrange multipliers.
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The stationary points of the Lagrange function can be found 
by solving the following equations,
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This represent (𝑛 + 2𝑚) equations in the (𝑛 + 2𝑚)
unknowns, 𝑿, 𝝀 and 𝒀. The solution gives the optimum 
solution vector, 𝑿∗; the Lagrange multiplier vector, 𝝀∗; and 
the slack variable vector, 𝒀∗.
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the conditions to be satisfied at a constrained minimum 
point, 𝑿∗, can be expressed as

These are called Kuhn–Tucker conditions, necessary 
conditions to be satisfied at a relative minimum of 𝑓 (𝑿). 
These conditions are, in general, not sufficient to ensure a 
relative minimum. 



Kuhn-Tucker Conditions

Design and Optimization - Classical Methods 40

However, there is a class of problems, called convex 
programming problems, for which the Kuhn–Tucker
conditions are necessary and sufficient for a global 
minimum. 
If the set of active constraints is not known, the Kuhn–Tucker 
conditions can be stated as follows:
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Note that if the problem is one of maximization or if the 
constraints are of the type  𝑔𝑗 ≥ 0, the 𝜆𝑗 have to be 

nonpositive. 

On the other hand, if the problem is one of maximization 
with constraints in the form type  𝑔𝑗 ≥ 0, the 𝜆𝑗 have to be 

nonnegative.
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