
Design and Optimization - Heuristic methods

Genetic Algorithm

Issues in Design Optimization:

The potential objective functions for many engineering
systems are based on:
cost, weight, volume, mass, stress, performance,
reliability of a system, among others.

The constraints can be placed on:
resources, stresses, forces, pressure, temperature,
strains, displacements, velocity, current flow, voltage,
frequencies, manufacturing limitations, and other
performance criteria.

30

Design and Optimization - Heuristic methods

Genetic Algorithm

Issues in Design Optimization:

The size of the problem:
Number of decision variables, constraints and
complexity of the model.

In case the number of equality constraints is greater
than the number of design variables in a problem, no
solution will exist unless some of the constraints are
dependent.

31

Design and Optimization - Heuristic methods

Genetic Algorithm

Issues in Design Optimization:

Design variables:
To start with, all the possible parameters or unknowns
should be viewed as potential design variables which
should be independent of each other as far as possible.

As we gain more knowledge about the problem,
redundant or unnecessary design variables can be
fixed or eliminated from the model.

32

Design and Optimization - Heuristic methods

Genetic Algorithm

Issues in Design Optimization:

The idea of design variable linking is useful to reduce
the number of design variables in an optimization model.

If one of the design variables can be expressed in terms
of others, then that variable can be eliminated from
the model.

In engineering design problems, lower and upper limits
on the design variables are often imposed as a result
of practical limitations.

33

Design and Optimization - Heuristic methods

Genetic Algorithm

Issues in Design Optimization:

Sensitivity of design variables is important factor

In general, it is desirable to normalize all the constraints
with respect to the objective function or their limit values

34

Penalty and Barrier Methods
General classical constrained minimization problem

minimize 𝑓(𝒙)
subject to 𝑔(𝒙)  0

ℎ(𝒙) = 0

Penalty methods are motivated by the desire to use
unconstrained optimization techniques to solve
constrained problems.

This is achieved by either

• adding a penalty for infeasibility and forcing the solution to feasibility
and subsequent optimum, or

• adding a barrier to ensure that a feasible solution never becomes
infeasible.

Genetic Algorithm

Design and Optimization - Heuristic methods 35

Design and Optimization - Heuristic methods

Penalty and Barrier Methods:

- minimize objective as unconstrained function

- provide penalty to limit constraint violations

- magnitude of penalty varies throughout optimization

- sequential unconstrained minimization techniques

𝐹 𝒙, 𝑟𝑝 = 𝑓 𝒙 + 𝑟𝑝 𝑃(𝒙)

𝑓(𝒙) : original objective function

𝑃(𝒙) : imposed penalty function

𝑟𝑝 : scalar multiplier to determine penalty magnitude

𝑝 : unconstrained minimization number

Genetic Algorithm

36

Design and Optimization - Heuristic methods

Penalty and Barrier Methods:

𝐹 𝒙, 𝑟𝑝 = 𝑓 𝒙 + 𝑟𝑝 𝑃(𝒙)

𝑃 𝒙 = σ𝑗=1
𝑛 max 0, 𝑔𝑗 𝒙

2
+ σ𝑘=1

𝑚 [ℎ𝑘 𝒙) 2

Notes:
- if all constraints are satisfied, then 𝑃 𝒙 = 0
- penalty parameter, 𝑟𝑝 starts as a small number

but can increase with number of iterations.

- if 𝑟𝑝 is small 𝐹 𝒙, 𝑟𝑝 is easy to minimize but

yields large constraint violations
- if 𝑟𝑝 is large, constraints are all nearly satisfied

but the function is numerically ill-conditioned

Genetic Algorithm

37

Design and Optimization - Heuristic methods

Genetic Algorithm

Optimization summary

1. Problem definition or statement

2. Information and data collection

3. Definition of design or decision variables

4. Definition and formulation: Objective function

5. Definition and formulation: Constraints

6. Decision: Optimization method

7. Solution: Decision, Objective function, Constraints

38

Design and Optimization - Heuristic methods

Genetic Algorithm

Optimization summary

1. Problem definition or statement

2. Information and data collection

3. Definition of design or decision variables

4. Definition and formulation: Objective function

5. Definition and formulation: Constraints

6. Decision: Optimization method

7. Solution: Decision, Objective function, Constraints

39

Design and Optimization - Heuristic methods

Genetic Algorithm

Optimization summary: Assignment 5
1. Problem definition or statement Material:

How much production of: Shortening
Salad oil
Margarine

Maximize the profit
2. Information and data collection Losses
3. Definition of design or decision variables

4. Definition and formulation: Objective function Min prod:

5. Definition and formulation: Constraints

6. Decision: Optimization method

7. Solution: Decision, Objective function, Constraints Income, requirements

40

Design and Optimization - Heuristic methods

Genetic Algorithm

Optimization summary: Assignment 5

41

from scipy.optimize import linprog
Objective function
maxf = [-1.0, -0.8, -0.5]
Constraints
A = [[2/3/0.9, 0., 3/5], [0.0, 0.0, 1/5], [1/3/0.9, 1/0.95, 1/5]]
b = [250000, 2000, 110000]
x1_b = (100000, None)
x2_b = (50000, None)
x3_b = (10000, None)
boundvalues = [x1_b, x2_b, x3_b]
res = linprog(maxf, A_ub=A, b_ub=b, bounds=boundvalues)
print("Profit: ",-1.0*res.fun)
print("Production: ", res.x)
print(res)

Design and Optimization - Heuristic methods

Genetic Algorithm

Genetic Algorithm
Initialize population

Evaluation

Selection

Crossover

Mutation

Termination

42

Design and Optimization - Heuristic methods

Genetic Algorithm

Encoding

The process of representing the solution in the form of a
string that conveys the necessary information.

Just as in a chromosome, each gene controls a particular
characteristic of the individual, similarly, each bit in the
string represents a characteristic of the solution.

43

Design and Optimization - Heuristic methods

• When applying a GA to a problem one of the decisions we have to
make is how to represent the problem

• The classic approach is to use bit strings and there are still some
people who argue that unless you use bit strings then you have
moved away from a GA

• Bit strings are useful as
• How do you represent and define a neighbourhood for real

numbers?
• How do you cope with invalid solutions?

• Bit strings seem like a good coding scheme ifwe can represent our
problem using this notation

Genetic Algorithm

Representation

44

Design and Optimization - Heuristic methods

Genetic Algorithm

Encoding Methods: Variables - Chromosomes / bits:

- All kind of alphabets can be used for a chromosome
(numbers, characters….), but often a binary alphabet is
used.
Binary – Gray – Real – Integer – Permutation (Sequence)

- Decision variables (Genes) are concatenated to form a
string (chromosome).

- Order of genes on chromosome can be important
- Coding is one of the most important factor for the

performance of a GA.
- Code for feasible solutions and global optimum solution

45

Genetic Algorithm

Initialize population - Binary and Gray coding

Number of bits:
nbi = (np.ceil(np.log((xmax-xmin)/xres+1)/np.log(2))).astype(int)

M nbi = ceil(log((xmax - xmin)/xres+1)/log(2));

First population:
Bpop = np.zeros((npop,nbi))
Bpop = np.around(np.random.random(size=(Bpop.shape)))

M Bpop(npop,nch) = round(rand(npop,nch));

Design and Optimization - Heuristic methods 46

Genetic Algorithm

Initialize population - Binary and Gray coding
import numpy as np
xmax = 9
xmin = 0
xres = 0.1
npop = 10
nbi = (np.ceil(np.log((xmax-xmin)/xres+1)/np.log(2))).astype(int)
Bpop = np.zeros((npop,nbi))
Bpop = np.around(np.random.random(size=(Bpop.shape)))

print(Bpop) [[0 1 1 0 0 0 1]

[1 0 1 0 0 0 1]
[1 1 1 0 1 0 1]
[1 1 1 1 0 0 0]
[0 1 1 1 0 0 1]
[1 0 0 1 0 0 0]
[0 1 0 0 1 0 1]
[0 1 0 0 1 0 0]
[1 1 0 0 1 0 0]
[0 0 0 0 1 1 0]]

Design and Optimization - Heuristic methods 47

Design and Optimization - Heuristic methods

Genetic Algorithm

Encoding Methods: Variables - Chromosomes / bits:

Number of variables: 𝑛𝑣
Variables: 𝑥1 , 𝑥2, 𝑥3, … . 𝑥𝑛𝑣
Each variable: 𝑥𝑖𝑚𝑖𝑛 ≤ 𝑥𝑖 ≤ 𝑥𝑖𝑚𝑎𝑥 𝑎𝑛𝑑 𝑥𝑖𝑟𝑒𝑠
Binary
Number of chromoshomes(bits):

xmax = 9, 9
xmin = 0, 0
xres = 0.1, 0.1
npop = 10

nbi = (np. ceil(np. log(np. subtract(xmax, xmin)/xres + 1)/np. log(2))). astype(int)

Total number of bits: 𝑛𝑏𝑖𝑡 = σ1
𝑛𝑣 𝑛𝑏𝑖𝑖

48

Design and Optimization - Heuristic methods

Genetic Algorithm

Encoding Methods: Gray to Binary to Real (Integer)

Binary number B: 1001110110 Gray number: G: 110101101
Gray to Binary B G

Bnbi = Gnbi 0 000 000
Bnbi-1 = XOR(Bnbi,Gnbi-1) 1 001 001
Bnbi-2 = XOR(Bnbi-1,Gnbi-2) 2 010 011

3 011 010
Gi = XOR(Bi+1,Bi) 4 100 110

5 101 111

Number ki = ∑j=0 B(nchi –j) 2j

Real xi = ximin + (ximax – ximin) ki /(2nchi-1)

49

Genetic Algorithm

Coding – Initialize population

Integer variable representation 5

Ipop = np.array([Imin + (Imax-Imin)*np.random.random(size=(Imax.shape))]).astype(int)

Real variable representation 3.567

Rpop = np.array([Rmin + (Rmax-Rmin)*np.random.random(size=(Rmax.shape))])

Permutation – order representation 412563
Ppop = np.zeros((npop,npvar))
Ppop = np.argsort(np.random.random(size=(Ppop.shape)))

Design and Optimization - Heuristic methods 50

Design and Optimization - Heuristic methods

GA Parent Sampling and Selection

Sampling space:
- Size : npop
- Parents
- Parents + offsprings

Selection mechanism:
- Roulette wheel selection (Selection proportional to fitness)
- Stochastic Universal Sampling. “
- Truncation selection (All individuals are sorted)
- Ranking selection

- Tournament selection (The fittest one in group is selected)

Genetic Algorithm

51

Design and Optimization - Heuristic methods

Roulette Wheel selection:
The most common fitness-proportionate selection technique is called Roulette
Wheel Selection. Conceptually, each member of the population is allocated a section
of an imaginary roulette wheel. Unlike a real roulette wheel the sections are
different sizes, proportional to the individual's fitness, such that the fittest
candidate has the biggest slice of the wheel and the weakest candidate has the
smallest. The wheel is then spun and the individual associated with the winning
section is selected. The wheel is spun as many times as is necessary to select the full
set of parents for the next generation.

Using this technique it is possible (probable) that one or more individuals is
selected multiple times. That's OK, it's what we want to happen. Remember that we
are not selecting the members of the next generation, we are selecting their parents
and it is possible for an individual to be a parent multiple times. If there is a
particularly fit member of the population we would expect it to be more successful
at producing offspring than a weaker rival.

Genetic Algorithm

52

Design and Optimization - Heuristic methods

Stochastic Universal Sampling:
Stochastic Universal Sampling is an elaborately-named variation of roulette wheel
selection. Stochastic Universal Sampling ensures that the observed selection
frequencies of each individual are in line with the expected frequencies. So if we
have an individual that occupies 4.5% of the wheel and we select 100 individuals,
we would expect on average for that individual to be selected between four and five
times. Stochastic Universal Sampling guarantees this. The individual will be selected
either four times or five times, not three times, not zero times and not 100 times.
Standard roulette wheel selection does not make this guarantee.
Stochastic Universal Sampling works by making a single spin of the roulette wheel.
This provides a starting position and the first selected individual. The selection
process then proceeds by advancing all the way around the wheel in equal sized
steps, where the step size is determined by the number of individuals to be selected.
So if we are selecting 30 individuals we will advance by 1/30 x 360 degrees for each
selection. Note that this does not mean that every candidate on the wheel will be
selected. Some weak individuals will have very thin slices of the wheel and these
might be stepped over completely depending on the random starting position.

Genetic Algorithm

53

Design and Optimization - Heuristic methods

Truncation selection:
Truncation selection is the simplest and arguably least useful selection strategy.
Truncation selection simply retains the fittest x% of the population. These fittest
individuals are duplicated so that the population size is maintained.

For example, we might select the fittest 25% from a population of 100 individuals.
In this case we would create four copies of each of the 25 candidates in order to
maintain a population of 100 individuals.

This is an easy selection strategy to implement but it can result in premature
convergence as less fit candidates are ruthlessly culled without being given the
opportunity to evolve into something better. Nevertheless, truncation selection can
be an effective strategy for certain problems.

Genetic Algorithm

54

Design and Optimization - Heuristic methods

Rank selection:
Rank Selection is similar to fitness-proportionate selection except that selection
probability is proportional to relative fitness rather than absolute fitness. In other
words, it doesn't make any difference whether the fittest candidate is ten times
fitter than the next fittest or 0.001% fitter. In both cases the selection probabilities
would be the same; all that matters is the ranking relative to other individuals.

Rank selection will tend to avoid premature convergence by tempering selection
pressure for large fitness differentials that occur in early generations. Conversely,
by amplifying small fitness differences in later generations, selection pressure is
increased compared to alternative selection strategies.

Genetic Algorithm

55

Design and Optimization - Heuristic methods

Turnament selection:
Tournament Selection is among the most widely used selection strategies in
evolutionary algorithms. It works well for a wide range of problems, it can be
implemented efficiently, and it is amenable to parallelisation.

At its simplest tournament selection involves randomly picking two individuals
from the population and staging a tournament to determine which one gets
selected.

The "tournament" isn't much of a tournament at all, it just involves generating a
random value between zero and one and comparing it to a pre-determined selection
probability. If the random value is less than or equal to the selection probability, the
fitter candidate is selected, otherwise the weaker candidate is chosen. The
probability parameter provides a convenient mechanism for adjusting the selection
pressure. In practise it is always set to be greater than 0.5 in order to favour fitter
candidates. The tournament can be extended to involve more than two individuals if
desired.

Genetic Algorithm

56

