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Introduction

Summary:

What: Systematic search for the “best” design.

Why: Help you to stay competitive

How:

* Build a model of the system of interest (usually the hard part)

Model has several parameters
o Fixed
o Others can be varied (design variables)

Design goals are represented by an objective function.

Design constraints are represented by constraint functions.

Find values of the design parameters which minimize (or maximize)
the objective function while satisfying all the constraints.
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Methods . Makthe‘nmical programming or Stochasticj process o

* optimization techniques techniques Statistical methods
Calculus methods Statistical decision theory Regression analysis
Calculus of variations Markov processes Cluster analysis, pattern
Nonlinear programming Queueing theory recognition
Geometric programming Renewal theory Design of experiments
Quadratic programming Simulation methods Discriminate analysis
Linear programming Reliability theory (factor analysis)

Dynamic programming

[nteger programming

Stochastic programming

Separable programming
Multiobjective programming
Network methods: CPM and PERT
Game theory

Modern or nontraditional optimization techniques

Genetic algorithms
Simulated annealing

Ant colony optimization
Particle swarm optimization
Neural networks

Fuzzy optimization
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Introduction

Classification of optimization problems

Classification Based on the Nature of the Equations Involved
Classification Based on the Permissible Values of the Design Variables
Classification Based on the Deterministic Nature of the Variables
Classification Based on the Existence of Constraints

Classification Based on the Nature of the Design Variables
Classification Based on the Physical Structure of the Problem
Classification Based on the Separability of the Functions

Classification Based on the Number of Objective Functions

Design and Optimization - Classical Methods 4
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Introduction

Objective function max or min
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Minimum of f(x) is same as maximum of — f(x).
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Optimum solution of ¢f(x) or ¢ + f(x) same as that of f(x).
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Non Linear Optimization

Single variable optimization with no constraints:

A single-variable optimization problem is one in which the
value of x = x™ is to be found in the interval [a, b]| such that x*

mlnlleCS f(X). Aj, Ay, A3 = Relative maxima

Az = Global maximum
B1,B> = Relative minima fl)
By = Global minimum fc

A A Relative minimum
3 is also global

A minimum
B, X
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Necessary Condition é I ;
If a function f (x) is defined in the intervala < x < b and
has a relative minimum at x = x*, wherea < x * < b, and if
the derivative df (x)/dx = f'(x) exists as a finite number at
x =x",then f'(x x) = 0.
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Non Linear Optimization

Notes:
This can be proved even if x* is a relative maximum.

This does not say what happens if a minimum or maximum
occurs at a point x* where the derivative fails to exist.

This does not say what happens if a minimum or maximum
occurs at an endpoint of the interval of definition of the
function.

This does not say that the function necessarily will have a
minimum or maximum at every point where the derivative is
ZETO.

Design and Optimization - Classical Methods 7



Non Linear Optimization

Sufficient Condition

Let f'(x™) = f'(x") =---= f*"1(x") =0,
but f*(x*) = 0.

Then f (x¥) is

(i) a minimum value of f(x) if f™*(x*) > 0 and n is even;
(ii) a maximum value of f (x) if f"(x™) < 0and n is even;
(iii) neither a maximum nor a minimum if n is odd.
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Non Linear Optimization

Multivariable optimization with no constraints

Necessary Condition
If f(x) has an extreme point (maximum or minimum)

at x = x™ and if the first partial derivatives of f (x) exist at x7,
then

of of _i_

5t ) e = T = 0
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Non Linear Optimization

Multivariable optimization with no constraints

Sufficient Condition

A sufficient condition for a stationary point x* to be an
extreme point is that the matrix of second partial derivatives
(Hessian matrix) of f(x) evaluated at x™is:

(i) positive definite when x*is a relative minimum point,
and

(ii) negative definite when x*is a relative maximum point.
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Non Linear Optimization

Multivariable optimization with no constraints

X=X* }

A matrix A will be positive definite if all its eigenvalues are
positive; that is, all the values of A that satisfy the
determinantal equation |[A — AI| = 0 should be positive.

Similarly, the matrix [A] will be negative definite if its
eigenvalues are negative.

Hessian matrix
32 f

dx;ox j
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Non Linear Optimization

Multivariable optimization with no constraints

To find the positive definiteness of a matrix 4 of order n
involves evaluation of the determinants

A= lanl,
ayy apy aiy --- A
A, = [¢11 912 axl axp azp --- am
ar1 d» i i L
A, = |@31 az asz as,
ajpp diz djz
A3 = l|ay; a» axn|, ..., pl dp2 dp3 --- dpp

aszp dazy az»
The matrix A will be positive definite if and only if all the
values A, A,, A5,..., A, are positive. The matrix A will be
negative definite if and only if the sign of 4; is (- 1)/
for j = 1,2,...,n.
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Non Linear Optimization

Multivariable optimization with equality constraints
Minimize f = f(X)
subject to

gi(X)=0, j=12,..., m

Here m is less than or equal to n; otherwise (if m>n), the
problem becomes overdefined and, in general, there will be no
solution.
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Method of Lagrange Mulitpliers

Multivariable optimization with equality constraints
Method of Lagrange Multipliers:

Problem with two variables and one constraint.

Minimize f (x4, x,)
subject to
g(x,x3) =0

For this problem, the necessary condition for the existence of
an extreme point at
X =Xx
1S
=0

of df/dxy Og )
dx;  dg/oxy dxi

{,1"]*‘. x3)
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Method of Lagrange Mulitpliers

Method of Lagrange Multipliers:
By defining a quantity A, called the Lagrange multiplier, as

) daf/dxa
A= — :
Ug/ﬂxz

(x], x3)
Equations can be expressed as
d 0g
L}-l{] d,‘l"l H_zlk x;::}
0 dg
( ( ‘f + }ll' C é) ) a 0
L}J.'z LL\"Q LTT, ¥

ra

Design and Optimization - Classical Methods 15



Method of Lagrange Mulitpliers

Method of Lagrange Multipliers:

In addition, the constraint equation has to be satisfied at the
extreme point, that is,

g(xr, -1‘E)|{A'f:..rﬁ*) =50

Notice that the partial derivative
has to be nonzero to be able to define A
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Method of Lagrange Functions

Method of Lagrange Function:
The necessary conditions are more commonly generated

by constructing a function L, known as the Lagrange function,

as L(xy,x2, ) = f(x1,x2) + Ag(xy, x2)

By treating L as a function of the three variables x1, x2, and ,
the necessary conditions for its extremum are given by

JL _ of . 0g

— (X1, x2,A) = —(x1,x2) + A—(x1,x2) =0
dxq dxq 0X]

oL Jf g

f_—(,\“l. X2, A) = f—f(.rl* x2) + A & (x1,x2) =0
dxo dx- dx2

dL

— (x1,x2, 1) = g(x1,x2) =0

oA
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Method of Lagrange Functions

Method of Lagrange Function:
The necessary conditions are more commonly generated

by constructing a function L, known as the Lagrange function,
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JL _ of . 0g
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f_—(,\“l. X2, A) = f—f(.rl* x2) + A & (x1,x2) =0
dxo dx- dx2

dL
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Method of Lagrange Functions

Method of Lagrange Function:

The necessary conditions for general problem
Minimize f(x)

subject to
gix)=0, j=12,..m

The Lagrange function, L, in this case is defined by introducing
one Lagrange multiplier 4; for each constraint g;(x) as

L(x1,%0,..., %0, A1, A5, ..., Ay)
= f(x) +419:(x) + 2,9,(x) + -+ 4,9 (X)
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Method of Lagrange Functions

Method of Lagrange Function:
By treating L as a function of the n + m unknowns,
X1, X0, ey Xy A, Aoy ooy A,

the necessary conditions for the extremum of L, which also
correspond to the solution of the original problem are given by

m

oL of 0g;
—_— = — h;i—— =0, r=1,2,....n
0 X; 0x; i ZHJ 0x;
J=1
oL .
E:E;‘(X):U. Jj=1,2, ..., m

Equations represent n + m equations in terms
of then + munknowns, x; and 4; .
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Method of Lagrange Functions

Method of Lagrange Function:

The solution gives e e
-‘u‘l .!'.'v]
* n ok
X A
: 2 . y)
X*={ "¢ and A" =1 "}
* 1 %k
L \ﬁ L A'”? )

The vector X™ corresponds to the relative constrained
minimum of f(X) (sufficient conditions are to be verified)
while the vector A* provides the sensitivity information.
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Method of Lagrange Functions

Sufficient Condition
A sufficient condition for f(X) to have a relative
minimum at X~ is that the quadratic, Q, defined by

o 2L
0=>) > ——dx; dx;

evaluated at X = X" must be positive definite for all values of
dX for which the constraints are satisfied.
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