
Genetic Algorithm

Tournament selection
A method of selecting an individual from a population of
individuals. Tournament selection involves running several
"tournaments" among a few individuals chosen at random
from the population. The winner of each tournament (the
one with the best fitness) is selected for crossover.

Pseudo code:
choose n (the tournament size) individuals from the population at random
choose the best individual from pool/tournament with probability p
choose the second best individual with probability p*(1-p)
choose the third best individual with probability p*((1-p)^2)
and so on...

Design and Optimization - Heuristic methods 56

Genetic Algorithm

Tournament selection

Design and Optimization - Heuristic methods 57

def gen_parents(nnum):

Ipar = np.zeros((2,nnum))

Ipar[0][:] = np.argsort(np.random.rand(nnum))

Ipar[1][:] = np.argsort(np.random.rand(nnum))

Ipar = Ipar.astype(int)

return Ipar

def tournament_selection(Ppop, PI, ptou):

npop = Ppop.shape[0]

npvar = Ppop.shape[1]

Pnew = np.zeros((npop,npvar))

Ipar = gen_parents(npop)

for i in range(npop):

Pnew[i][:] = Ppop[Ipar[0][i]][:]

ptran = np.random.random(1)

if ptran < ptou:

if PI[Ipar[1][i]] < PI[Ipar[0][i]]:

Pnew[i][:] = Ppop[Ipar[1][i]][:]

return Pnew

Genetic Algorithm

Crossover
- Two parents (randomly selected) produce two offspring

- Chromosomes of two parents can be copied unmodified
as offspring

- The probability of crossover is between 0.6 to 1.0

Design and Optimization - Heuristic methods 58

Crossover: 1. point (binary)

Crossover: 2. point (binary)

Genetic Algorithm

Design and Optimization - Heuristic methods 59

Design and Optimization - Heuristic methods

Crossover: Uniform crossover (binary)

Genetic Algorithm

60

Crossing based on random numbers 0 or 1

Design and Optimization - Heuristic methods

Crossover: HX (Heuristic - crossover)

Genetic Algorithm

From a pair of parents, 𝑥1 = (𝑥1
1, 𝑥2

1, …… , 𝑥𝑛
1)

𝑥2 = (𝑥1
2, 𝑥2

2, …… , 𝑥𝑛
2)

an offspring 𝑦1 = (𝑦1, 𝑦2, …… , 𝑦𝑛)

is generated in the following manner

real 𝑦𝑖 = 𝑢 𝑥𝑖
2 − 𝑥𝑖

1 + 𝑥𝑖
2

integer 𝑦𝑖 = 𝑖𝑛𝑡(𝑢 𝑥𝑖
2 − 𝑥𝑖

1 + 𝑥𝑖
2)

where 𝑢 is a uniformly distributed random number [0,1]
and parent (2) has fittness value not wors than parent (1)

61

GA: LX crossover (Laplace – real – int)

Laplace crossover is defined for real and integer variables.

A parameter in the Laplace crossover operator take care of
integer decision variables in the optimization problem.

Two offsprings 𝑦1 = (𝑦1
1, 𝑦2

1, … . . , 𝑦𝑛
1) and

𝑦2 = (𝑦1
2, 𝑦2

2, … . . , 𝑦𝑛
2)

are generated from a pair of parents

𝑥1 = (𝑥1
1, 𝑥2

1, … . . 𝑥𝑛
1) and

𝑥2 = (𝑥1
2, 𝑥2

2, … . . 𝑥𝑛
2)

in following way:

Genetic Algorithm

Design and Optimization - Heuristic methods 62

Design and Optimization - Heuristic methods

Genetic Algorithm

GA: LX crossover (Laplace – real – int) cont.

First, a uniformly distributed random numbers 𝑢𝑖 , 𝑟𝑖 = [0,1]
are generated.

Then, a random number 𝛽𝑖 is generated which follows the
Laplace distribution by simply inverting the distribution
function of Laplace distribution as follows:

𝛽𝑖 = ൞
𝑎 − 𝑏 log𝑒 𝑢𝑖 𝑟𝑖 ≤

1

2

𝑎 + 𝑏 log𝑒 𝑢𝑖 𝑟𝑖 >
1

2

63

Design and Optimization - Heuristic methods

Genetic Algorithm

GA: LX crossover (Laplace – real – int) cont.

where a is location parameter and b > 0 is scaling parameter.
If the decision variables have a restriction to be integer then
𝑏 = 𝑏𝑖𝑛𝑡 , otherwise 𝑏 = 𝑏𝑟𝑒𝑎𝑙 , i.e., for integer and real
decision variables, scaling parameter is different.
Typical values: 𝑎 = 0 𝑏𝑖𝑛𝑡 = 0.35 𝑏𝑟𝑒𝑎𝑙 = 0.15

The offsprings are given by the equations:

𝑦𝑖
1 = 𝑥𝑖

1 + 𝛽 𝑥𝑖
1 − 𝑥𝑖

2

𝑦𝑖
2 = 𝑥𝑖

2 + 𝛽 𝑥𝑖
1 − 𝑥𝑖

2

64

Design and Optimization - Heuristic methods

Genetic Algorithm

GA: Non-Uniform Mutation
Michalewichz‘s Non-Uniform Mutation is one of the widely
used mutation operators in real coded GAs.

From the point 𝑥𝑡 = (𝑥1
𝑡 , 𝑥2

𝑡 , … . . 𝑥𝑛
𝑡) the

muted point 𝑥𝑡+1 = (𝑥1
𝑡+1, 𝑥2

𝑡+1, … . . 𝑥𝑛
𝑡+1) is created as

follows:

𝑥𝑖
𝑡+1 = ൞

𝑥𝑖
𝑡 + Δ 𝑡, 𝑥𝑖

𝑢 − 𝑥𝑖
𝑡 𝑖𝑓 𝑟 ≤

1

2

𝑥𝑖
𝑡 − Δ 𝑡, 𝑥𝑖

𝑡 − 𝑥𝑖
𝑙 𝑖𝑓 𝑟 >

1

2

65

Design and Optimization - Heuristic methods

Genetic Algorithm

GA: Non-Uniform Mutation
where 𝑡 is the current generation number and 𝑟 is a uniformly
distributed random number in interval 0,1

𝑥𝑖
𝑙 and 𝑥𝑖

𝑢 are lower an duper bounds of the 𝑖th component of
the decision vector respectively.

The function Δ 𝑡, 𝑦 = 𝑦 1 − 𝑢(1−
𝑡

𝑇
)

𝑏

where 𝑢 is a uniformly
distributed random number in the interval 0,1 , 𝑇 is the
maximum number of generations and 𝑏 is a parameter,
determining the strength of the mutation operator.

66

Design and Optimization - Heuristic methods

Permutation Crossover

Ordinal representation (One point crossover)

Partially – mapped crossover

Cycle crossover

Modified crossover

Order crossover

Order based crossover

Position based crossover

Edge recombination

Genetic Algorithm

67

Design and Optimization - Heuristic methods

Genetic Algorithm

NP combinatorial Problems: Crossover
The ordinal representation (One point crossover)

68

Design and Optimization - Heuristic methods

Genetic Algorithm

NP combinatorial Problems: Crossover
Crossover operators preserving the absolute position

The partially-mapped crossover

69

Design and Optimization - Heuristic methods

Genetic Algorithm

NP combinatorial Problems: Crossover

The cycle crossover

70

Design and Optimization - Heuristic methods

Genetic Algorithm

NP combinatorial Problems: Crossover
Crossover operators preserving the relative order

The modified crossover

71

Design and Optimization - Heuristic methods

Genetic Algorithm

NP combinatorial Problems: Crossover

The order crossover

72

Design and Optimization - Heuristic methods

Genetic Algorithm

NP combinatorial Problems: Crossover

The order based crossover

73

Design and Optimization - Heuristic methods

Genetic Algorithm

NP combinatorial Problems: Crossover

The position based crossover

74

Design and Optimization - Heuristic methods

NP combinatorial problems: Edge recombination

Genetic Algorithm

od = 8 ;
xp1 = [1 3 5 6 4 2 8 7] ;
xp2 = [1 4 2 3 6 5 7 8] ;

Edge table:

75

Design and Optimization - Heuristic methods

NP combinatorial problems: Edge

City 1 is randomly selected as starting city

All edges incident to city 1 are deleted from the edge map

From city 1, we can go to cities 3,4,7 and 8.

City 3 has three active edge, while city 4, 7 and 8 have two edge. Hence, a
random choice is made between 4, 7 and 8.

City 8 is randomly selected.

From city 8 we can go to cites 2 and 7.

As indicated in edge map, city 2 has two active edges and city 7 has only
one.

City 7 is selected and from there is no choice, but go to city 5.

Genetic Algorithm

76

Design and Optimization - Heuristic methods

NP combinatorial problems: Edge

From city 5 the edge map offers a choice between cities 3 and 6, both with
two active edge.

City 6 is randomly selected.

From city 6 we can go to cities 3 and 4, both with one active edge.

City 4 is randomly selected.

Finally from city 4 we can only go to city 2 and from 2 to city 3

The final tour: 18756423

Genetic Algorithm

77

Design and Optimization - Heuristic methods

NP combinatorial problems: Edge

Genetic Algorithm

78

