
Design and Optimization

Evolutionary Strategies ES

Initialize population

Evaluate

Select partners

Recombinate

Mutate

Evaluate / Terminate

Evolutionary Strategies ES

Main Algorithm code

Parameters settings
Number of generation
ngen = 100
Number of offspring
lamb = 100

Number of parents mu/lambda (ratio 1/7)
mu = 15

Expected rate of convergence
varcon = 1

Mean step size
sig0 = 1

Design and Optimization

Evolutionary Strategies ES

Initialize population

Evaluate

Select partners

Recombinate

Mutate

Evaluate / Terminate

Evolutionary Strategies ES

Initial setting
Decision variables min and max values
Rvar = np.array([

[-512, -512],
[513, 513]])

Number of parameters
Npar = Rvar.shape[1]
Rmin = Rvar[0][0:Npar]
Rmax = Rvar[1][0:Npar]

Strategies parameters
sig = np.ones((lamb,Npar))
tau = varcon/math.sqrt(Npar)

Random population
Rpop = np.ones((lamb,Npar))*Rmin+np.random.random((lamb,Npar))*np.array(Rmax-Rmin)

Design and Optimization

Evolutionary Strategies ES

Initialize population

Evaluate

Evolutionary Strategies ES

Random population
Rpop = np.ones((lamb,Npar))*Rmin+np.random.random((lamb,Npar))*np.array(Rmax-Rmin)

PI_best_progress = [] # Tracks progress
Rbest = Rpop[0][:]

Performance index
PI = fitness_function(Rpop)
PI_best = np.min(PI)
ind = np.zeros(1)
ind = np.where(PI == PI_best)
Pbest = np.array(Rpop[ind[0]][:])

print ('Starting best score, % target: ',PI_best)
Add starting best score to progress tracker
PI_best_progress.append(PI_best)

Design and Optimization

Evolutionary Strategies ES

Initialize population

Evaluate

Select partners

Recombinate

Mutate

Evaluate / Terminate

Evolutionary Strategies ES

isort = np.argsort(PI)
PIopt = PI[isort]
Ropt = Rpop[isort][:]

Index selection vector
isel = np.zeros(lamb)
icou = 0
for i in range (lamb):

isel[i] = icou
icou = icou + 1
if(icou == mu): icou = 0

isel = isel.astype(int)

Design and Optimization

Evolutionary Strategies ES

Initialize population

Evaluate

Select partners

Recombinate

Mutate

Evaluate / Terminate

Evolutionary Strategies ES

for igen in range(ngen):
Ranking
isort = np.argsort(PI)
Selection
Rpop = Rpop[isort[isel[:]]][:]
sig = sig[isort[isel[:]]][:]
sig = sig*np.exp(np.random.random((lamb,Npar)))

Variation of variables
Rpop = Rpop + np.random.random((lamb,Npar))*sig
Rminm = np.ones((lamb,Npar))*Rmin
Rmaxm = np.ones((lamb,Npar))*Rmax
imin = np.where(Rpop<Rminm)
imax = np.where(Rpop>Rmaxm)
Rpop[imin[:][0],imin[:][1]]=Rminm[imin[:][0],imin[:][1]]
Rpop[imax[:][0],imax[:][1]]=Rmaxm[imax[:][0],imax[:][1]]

Design and Optimization

Evolutionary Strategies ES

Evolutionary Strategies ES Performance Index (Eggholder function)

import random
import math
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D

def fitness_function(Rpop):
npop = Rpop.shape[0]
npvar = Rpop.shape[1]
PI = np.zeros((npop))
Eggholder
for ip in range(npop):

x = Rpop[ip][:]
PI[ip] =(-(x[1] + 47) * np.sin(np.sqrt(abs(x[0]/2 + (x[1] + 47))))

-x[0] * np.sin(np.sqrt(abs(x[0] - (x[1] + 47)))))
return PI

Simulated annealing (SA) :
is a random-search technique which exploits an analogy
between the way in which a metal cools and freezes
into a minimum energy crystalline structure
(the annealing process) and the search for a minimum
in a more general system.

Numerical simulation of Annealing:
P(δE) = e(- δE/kT)

P(δE) : Probability of an increase in energy by δE
T : Temperature
k : Boltzmann’s constant

Simulated Annealing

Design and Optimization

Simulated annealing (SA) :

It forms the basis of an optimization technique for
combinatorial and other problems.

Simulated annealing was developed in 1983 to deal with
highly nonlinear problems.

Simulated Annealing

Design and Optimization

Simulated annealing (SA):
SA approaches the global maximization problem similarly
to using a bouncing ball that can bounce over mountains
from valley to valley. It begins at a high "temperature" which
enables the ball to make very high bounces,
which enables it to bounce over any mountain to access any
valley, given enough bounces.

Simulated Annealing

Design and Optimization

Simulated annealing (SA):
- SA's major advantage is an ability to avoid becoming

trapped in local minima.

- The algorithm employs a random search which
not only accepts changes that decrease the
objective function f (assuming a minimization
problem), but also some changes that increase it.

The latter are accepted with a probability
δf = f(xi+1) – f(xi)
p(δf) = exp (- δf / T)

Simulated Annealing

Design and Optimization

Simulated annealing (SA):

Thermodynamic Simulation Combinatorial Optimization
System States Feasible Solutions
Energy Objective
Change of State Neighboring Solutions
Temperature Control Parameter
Frozen State Heuristic Solution

Simulated Annealing

Design and Optimization

SA Algorithm: Part 1

Initial steps:
Solution Space S(x)
Objective Function f(x)
Select Initial Point xo in S
Select Initial Temperature To
Select Temperature Reduction Function

Simulated Annealing

Design and Optimization

SA Algorithm: Part 2
Iteration steps:
For i_iteration = 1,N_iteration

Generate New Solution xi+1=xi + D u D: max change u:R[-1 1]

Assess New Solution δf = f(xi+1) – f(xi), if δf < 0 or
Random number r : [0 1] if r < e-δf /Tk

Accept New Solution (No: Continue / Yes: Update)

Update Di+1 = (1-a) Di +a w R

Adjust Temperature Exp. cooling scheme Tk+1 = α Tk (α = 0.95)

End i_iteration (Terminate Search)

Simulated Annealing

Design and Optimization

SA Algorithm:
xi+1=xi + D u

where u is a vector of random numbers in the range (-1,1) and
D is a diagonal matrix which defines the maximum change
allowed in each variable.
After a successful trial, i.e. after an accepted change in solution,
D is updated:

Di+1 = (1-a) Di +αω R
where α is a damping constant and controls the rate at which
information from R is folded into D with weighting ω. R is a
diagonal matrix the elements of which consist of the
magnitudes of the successful changes made to each control
variable.

Simulated Annealing

Design and Optimization

SA Algorithm:
For problems with integer control variables, the simple strategy
whereby new trial solutions are generated according to the
formula:

xi+1=xi + u

where u is a vector of random integers in the range (-1, 1) often
suffices.

Simulated Annealing

Design and Optimization

SA Algorithm:

Simulated Annealing

Design and Optimization

Introduction:

Particle swarm optimization (PSO) is a population based
stochastic optimization technique developed by Dr. Eberhart
and Dr. Kennedy in 1995, inspired by social behavior of bird
flocking or fish schooling.

Particle Swarm Optimization

Design and Optimization

Introduction:

PSO shares many similarities with evolutionary computation
techniques such as Genetic Algorithms (GA).

The system is initialized with a population of random solutions
and searches for optima by updating generations.

However, unlike GA, PSO has no evolution operators such as
crossover and mutation.

In PSO, the potential solutions, called particles, fly through the
problem space by following the current optimum particles.

Particle Swarm Optimization

Design and Optimization

Introduction:

Each particle keeps track of its coordinates in the problem
space which are associated with the best solution (fitness) it
has achieved so far. (The fitness value is also stored.)
-This value is called pbest.

Another "best" value that is tracked by the particle swarm
optimizer is the best value, obtained so far by any particle in the
neighbors of the particle.
-This location is called lbest.

When a particle takes all the population as its topological
neighbors,
-The best value is a global best and is called gbest.

Particle Swarm Optimization

Design and Optimization

Introduction:

The particle swarm optimization concept consists of,
- At each time step, changing the velocity of (accelerating) each
particle toward its pbest and lbest locations (local version of
PSO).

- Acceleration is weighted by a random term, with separate
random numbers being generated for acceleration toward pbest
and lbest locations.

Particle Swarm Optimization

Design and Optimization

Method:

The particle position and velocity update equations in the
simplest form that govern the PSO are given by

Particle Swarm Optimization

Design and Optimization

Algorithm:

Particle Swarm Optimization

Design and Optimization

Algorithm:

Particle Swarm Optimization

Design and Optimization

Algorithm:

Particle Swarm Optimization

Design and Optimization

Algorithm:

Particle Swarm Optimization

Design and Optimization

Algorithm:

Particle Swarm Optimization

Design and Optimization

