S HASKOLI ISLANDS
E § VERKFRADI- 0G NATTURUVISINDASVID

R Evolutionary Strategies ES

NARFRABIDEILD

Evolutionary Strategies ES

Main Algorithm code
Initialize population
Parameters settings !
Number of generation Evaluate
ngen = 100
Number of offspring !
lamb = 100 » Select partners
Number of parents mu/lambda (ratio 1/7)
=15 .
m Recombinate
Expected rate of convergence !
varcon =1
Mutate
Mean step size ¥
sig0 = 1 Evaluate / Terminate

Design and Optimization

S HASKOLI ISLANDS
E § VERKFRADI- 0G NATTURUVISINDASVID

R Evolutionary Strategies ES

NARFRABIDEILD

Evolutionary Strategies ES Initialize population

Initial setting
Decision variables min and max values
Rvar = np.array([
[-512, -512],
[513, 513]])
Number of parameters
Npar = Rvar.shape[1]
Rmin = Rvar[0][0:Npar]
Rmax = Rvar[1][0:Npar]

A 4

Evaluate

A 4

Select partners

A 4

A 4

Recombinate

Strategies parameters

sig = np.ones((lamb,Npar))
tau = varcon/math.sqrt(Npar) ¥ _
Evaluate / Terminate

Mutate

Random population
Rpop = np.ones((lamb,Npar))*Rmin+np.random.random((lamb,Npar))*np.array(Rmax-Rmin)

Design and Optimization

S HASKOLI ISLANDS
E § VERKFRADI- 0G NATTURUVISINDASVID

R Evolutionary Strategies ES

UNARFRADIDEILD

Evolutionary Strategies ES

Random population
Rpop = np.ones((lamb,Npar))*Rmin+np.random.random((lamb,Npar))*np.array(Rmax-Rmin)

Pl_best_progress = [] # Tracks progress
Rbest = Rpop[0][:] Initialize population

A 4

Performance index

Pl = fitness_function(Rpop)
Pl_best = np.min(Pl) l
ind = np.zeros(1)

ind = np.where(Pl == Pl_best)

Pbest = np.array(Rpop[ind[0]][:])

Evaluate

print ('Starting best score, % target: ',Pl_best)
Add starting best score to progress tracker
Pl_best_progress.append(Pl_best)

Design and Optimization

SI
;‘ r3de HASKOLI ISLANDS
E °§ VERKFRZDI- OG NATTURUVISINDASVID

2
RRRRRRRRRRRRRRRR -, VELAVERKFRZEBI-
0G TOLV!

Dseae"
UNARFRABIDEILD

Evolutionary Strategies ES

Evolutionary Strategies ES

isort = np.argsort(Pl)
Plopt = Pl[isort]
Ropt = Rpoplisort][:]

Index selection vector
isel = np.zeros(lamb)

icou=0
foriin range (lamb):
isel[i] =icou

icou =icou +1
if(icou ==mu): icou=0
isel = isel.astype(int)

Initialize population

A 4

Evaluate

A 4

A 4

Select partners

A 4

Recombinate

Mutate

A 4

Evaluate / Terminate

Design and Optimization

Evolutionary Strategies ES

Evolutionary Strategies ES

for igen in range(ngen):
Ranking
isort = np.argsort(Pl)
Selection
Rpop = Rpoplisort[isel[:]]1][:]

Initialize population

A 4

Evaluate

A 4

sig = sig[isort[isel[:]]][:]
sig = sig*np.exp(np.random.random((lamb,Npar)))
Variation of variables
Rpop = Rpop + np.random.random((lamb,Npar))*sig
Rminm = np.ones((lamb,Npar))*Rmin
Rmaxm = np.ones((lamb,Npar))*Rmax
imin = np.where(Rpop<Rminm)
imax = np.where(Rpop>Rmaxm)

A 4

Select partners

A 4

Recombinate

Mutate

A 4

Rpop[imin[:][0],imin[:][1]]=Rminm[imin[:][0],imin[:][1]]
Rpop[imax[:][0],imax[:][1]]=Rmaxm[imax[:][0],imax][:][1]]

Evaluate / Terminate

Design and Optimization

Evolutionary Strategies ES

Evolutionary Strategies ES Performance Index (Eggholder function)

import random

import math

import numpy as np

import matplotlib.pyplot as plt

from mpl_toolkits.mplot3d import Axes3D

def fitness_function(Rpop):
npop = Rpop.shape[0]
npvar = Rpop.shape[1]
Pl = np.zeros((npop))
Eggholder
for ip in range(npop):
x = Rpoplip][:]
Pl[ip] =(-(x[1] + 47) * np.sin(np.sqrt(abs(x[0]/2 + (x[1] + 47))))
-x[0] * np.sin(np.sqrt(abs(x[0] - (x[1] + 47)))))
return P|

Design and Optimization

Simulated Annealing

Simulated annealing (SA) :

Is a random-search technique which exploits an analogy
between the way in which a metal cools and freezes
into a minimum energy crystalline structure

(the annealing process) and the search for a minimum
in a more general system.

Numerical simulation of Annealing:
P(SE) = el- 8E/KT)
P(0E) : Probability of an increase in energy by o0E
T : Temperature
k : Boltzmann's constant

Design and Optimization

Simulated Annealing

Simulated annealing (SA) :

[t forms the basis of an optimization technique for
combinatorial and other problems.

Simulated annealing was developed in 1983 to deal with
highly nonlinear problems.

Design and Optimization

Simulated Annealing

Simulated annealing (SA):

SA approaches the global maximization problem similarly
to using a bouncing ball that can bounce over mountains
from valley to valley. It begins at a high "temperature” which
enables the ball to make very high bounces,

which enables it to bounce over any mountain to access any

valley, given enough bounces.
A

f(x)

Design and Optimization

Simulated Annealing

Simulated annealing (SA):

- SA's major advantage is an ability to avoid becoming
trapped in local minima.

- The algorithm employs a random search which
not only accepts changes that decrease the
objective function f (assuming a minimization
problem), but also some changes that increase it.

The latter are accepted with a probability
8 = f(x,,1) - f(x;)
p(of) =exp (-of / T)

Design and Optimization

Simulated Annealing

Simulated annealing (SA):

Thermodynamic Simulation
System States
Energy
Change of State
Temperature
Frozen State

Combinatorial Optimization
Feasible Solutions
Objective
Neighboring Solutions
Control Parameter
Heuristic Solution

Design and Optimization

Simulated Annealing

SA Algorithm: Part 1

Initial steps:
Solution Space S(x)
Objective Function f(x)
Select Initial Point x, in S
Select Initial Temperature To
Select Temperature Reduction Function

Design and Optimization

Simulated Annealing

SA Algorithm: Part 2

[teration steps:
For i_iteration = 1,N_iteration

Generate New Solution Xx;,;=X;+ D u D: max change w:R[-1 1]

Assess New Solution of = f(x,) - f(x,), ifof <0 or
Random numberr: [0 1] ifr < ef/Tk

Accept New Solution (No: Continue / Yes: Update)
Update D,,, = (1-a) D, +taw R

Adjust Temperature Exp. cooling scheme T,,; = a T, (= 0.95)
End i_iteration (Terminate Search)

Design and Optimization

Simulated Annealing

SA Algorithm:
X=X+ Du

where u is a vector of random numbers in the range (-1,1) and
D is a diagonal matrix which defines the maximum change
allowed in each variable.
After a successful trial, i.e. after an accepted change in solution,
D is updated:

D.,,=(1-a) D, +taw R
where « is a damping constant and controls the rate at which
information from R is folded into D with weighting w. R is a
diagonal matrix the elements of which consist of the
magnitudes of the successful changes made to each control
variable.

Design and Optimization

Simulated Annealing

SA Algorithm:
For problems with integer control variables, the simple strategy
whereby new trial solutions are generated according to the

formula:

Xi,1=X; + U

i+1

where u is a vector of random integers in the range (-1, 1) often
suffices.

Design and Optimization

GRSITy

>
Dseae"

2z
Y

M Uy,
Vs, 2

HASKOLI [SLANDS
VERKFRZDI- OG NATTURUVISINDASVID

Simulated Annealing
SA Algorithm:

Input & Asgesy Inftal Selution
]

¥

Estirmate Initial lempesature

.l

Cenerate Mew halution

¥

Mgy Mews Solutlon

|
(7

Accept New Solution?

Update Stores

}

Adjust Temperature

Design and Optimization

Particle Swarm Optimization

Introduction:

Particle swarm optimization (PSO) is a population based
stochastic optimization technique developed by Dr. Eberhart
and Dr. Kennedy in 1995, inspired by social behavior of bird
flocking or fish schooling.

Design and Optimization

Particle Swarm Optimization

Introduction:
PSO shares many similarities with evolutionary computation
techniques such as Genetic Algorithms (GA).

The system is initialized with a population of random solutions
and searches for optima by updating generations.

However, unlike GA, PSO has no evolution operators such as
crossover and mutation.

In PSO, the potential solutions, called particles, fly through the
problem space by following the current optimum particles.

Design and Optimization

Particle Swarm Optimization

Introduction:

Each particle keeps track of its coordinates in the problem
space which are associated with the best solution (fitness) it
has achieved so far. (The fitness value is also stored.)

-This value is called pbest.

Another "best" value that is tracked by the particle swarm
optimizer is the best value, obtained so far by any particle in the
neighbors of the particle.

-This location is called Ibest.

When a particle takes all the population as its topological
neighbors,
-The best value is a global best and is called gbest.

Design and Optimization

Particle Swarm Optimization

Introduction:

The particle swarm optimization concept consists of,

- At each time step, changing the velocity of (accelerating) each
particle toward its pbest and Ibest locations (local version of
PSO).

- Acceleration is weighted by a random term, with separate
random numbers being generated for acceleration toward pbest
and [best locations.

Design and Optimization

Particle Swarm Optimization

Method:

The particle position and velocity update equations in the
simplest form that govern the PSO are given by

= v j — Couijt+ciri(globalbest; —x; ;) +cora(localbest; j—x; j)+cara(neighbor hoodbest; —x; ;)
= Tij — T+ i

Design and Optimization

€RSITq,
S o

HASKOLI [SLANDS

Particle Swarm Optimization

IDNADARVERKFRADI-, VELAVERKFRAEDI-
0G TOLVUNARFRADIDEILD

»\'\sm Uy,
)/
52)
Q
(23

Algorithm:

Let f . Rm — R be the fitness function that takes a particle’s solution with several components in higher
dimensional space and maps it to a single dimension metric. Let there be 7 particles, each with associated position
X; € R™ andvelocities v; € R™,2 =1, ..., n.LetX; be the curent best position of each particie and
let & be the global best.
* Initialize X; and V; for all . One common choice is to take Xij (= U[aj . bj] and V; = Oforall /and

j = 1, .+« 4 TN, Where a; bj-are the limits of the search domain in each dimension, and {/represents the

Uniform distribution (continuous).
" X; < X;and§ < argmin fiXi)s=1,..m

Design and Optimization

“gssur,,,,

Oi5339"

4

HASKOLI [SLANDS

Particle Swarm Optimization

IDNADARVERKFRADI-, VELAVERKFRAEDI-
0G TOLVUNARFRADIDEILD

oM g,
bis\ 2

A
W)

Algorithm:

* While not converged:
» Foreachpartice] < 12 < n:
" Create random vectors I't, I'2: T'15 and T2j for all jby taking 'y j, I'pj € U [0, 1] for
1=1,...,m
* Update the particle velocities: V; «— wV; + € T © (X; — X;) + ¢rp 0 (8 — X;)
» Update the particle positions: X; +— X; + V;.
* Update the local bests:lff(x,-) < f(f(,) X; — X;.
* Update the global bestlff(x,-) < f(g)g — X;.
» g is the optimal solution with fitness f (g).

Design and Optimization

RSIT

SE 42,

> <
P

Particle Swarm Optimization

Dseae"
IDNADARVERKFRBI-, VELAVERKFRDI-
0G TOLVUNARFRABIDEILD

JOM

Algorithm:

Mote the following about the above algaorithm:

" 3is aninertial constant. Good values are usually slightly less than 1. Or it could be randomly initialized for each

particle.

= 4y and Cp are constants that say how much the particle is directed fowards good positions. They represent a
"cognitive" and a "social" component, respectively, in that they affect how much the particle's personal best and the
global best (respectively) influence its movement. Usually we take Cy, Cp == 2 Or they could be randomly

Initialized for each particle.
« I't, I'2 are two random vectors with each component generally a uniform random number between 0 and 1.

» O operator indicates element-by-element multiplication i.e. the Hadamard matrix multiplication operator.

Design and Optimization

SIT,
SERSITA,
Sl

% g

539

J

HASKOLI [SLANDS

Particle Swarm Optimization

JUM g,
NVrrisy

(7

IDNADARVERKFRADI-, VELAVERKFRAEDI-
0G TOLVUNARFRADIDEILD

Algorithm:

» There is a misconception arising from the tendency to write the velocity formula in a "vector notation” (see for
example D.N. Wilke's papers). The original intent (see M.C.'s "Particle Swarm Optimization, 2006") was to multiply
a NEW random component per dimension, rather than multiplying the same component with each dimension per

particle. Moreover, /4 and /% are supposed to consist of a single number, defined as C,,, .., which normally has a
relationship with () (defined as <y in the literature) through a transcendental function, given the value &
C;=10/(p - 10+ (V¢, * L-’@) — (2.0 = I@)) -and- £, ... = ¢y * ¢. Optimal "confidence
coefficients" are therefore approximately in the ratio scale of ¢; = 0.7 and ¢, ... = 1.43. The pseudo code

shown below however, describes the intent correctly.

Design and Optimization

< Ze - . .
; r3de HASKOLI ISLANDS
9,)5 VERKFRADI- 0G NATTURUVISINDASVID

IDNADARVERKFRADI-, VELAVERKFRAEDI-
0G TOLVUNARFRADIDEILD

Particle Swarm Optimization

Algorithm:

Initialize the particle positions and their velocities
X = lower_limit + (upper_limit - lower_ limit) rand(n_particles, n_dimensions)
ssert X.shape == (n_particles, n_dimensions)

V = zeros (X.shape)

rnitialize the oloba

:
1

fitness gbest = inf
fitness_lbest = fitness_gbest ones (n_particles)
Loop until convergence, in this example a finite number of iterations chosen
for k in range(0, n_iterations):
fitness ¥ = evaluate fitness(X)
range (0, n particles):
if fitness X[I] fitness lbest[I]:
fitness_lbest[I] = fitness_XI[I]
for J in range(0, n_dimensions):
X lbest[I][J] = X[I][J]
min fitness index = argmin(fitness X)
min_fitness = fitness _X[min_ fitness_index]
if min fitness fitness gbest:
fitness_gbest = min_fitness
X gbest = X[min fitness index,:]

range (0, n particles):
J in range(0, n dimensions):
= uniform_random_number()
R2 = uniform_random_number()
VIII[J] = (w*v[I][J]
+ C1*R1*(X lbest[I][J] - X[I][J])
+ C2*R2* (X gbest[J] - X[I1[JI1))
X[T][J] = X[1]1[J] + v[T][J]

Design and Optimization

