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# Main Algorithm code

# Parameters settings
# Number of generation
ngen = 100
# Number of offspring
lamb = 100

# Number of parents mu/lambda (ratio 1/7)
mu = 15

# Expected rate of convergence
varcon = 1

# Mean step size
sig0 = 1
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# Initial setting
# Decision variables min and max values
Rvar = np.array([

[-512, -512],
[ 513,  513]])

# Number of parameters
Npar = Rvar.shape[1]
Rmin = Rvar[0][0:Npar]
Rmax = Rvar[1][0:Npar]

# Strategies parameters
sig = np.ones((lamb,Npar))
tau = varcon/math.sqrt(Npar)

# Random population
Rpop = np.ones((lamb,Npar))*Rmin+np.random.random((lamb,Npar))*np.array(Rmax-Rmin)
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# Random population
Rpop = np.ones((lamb,Npar))*Rmin+np.random.random((lamb,Npar))*np.array(Rmax-Rmin)

PI_best_progress = [] # Tracks progress
Rbest = Rpop[0][:]

# Performance index
PI =  fitness_function(Rpop)
PI_best = np.min(PI)
ind = np.zeros(1)
ind = np.where(PI == PI_best)
Pbest = np.array(Rpop[ind[0]][:])

print ('Starting best score, % target: ',PI_best)
# Add starting best score to progress tracker
PI_best_progress.append(PI_best)
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isort = np.argsort(PI)
PIopt = PI[isort]
Ropt = Rpop[isort][:]

# Index selection vector
isel = np.zeros(lamb)
icou = 0
for i in range (lamb): 

isel[i] = icou
icou = icou + 1
if(icou == mu): icou = 0

isel = isel.astype(int)
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for igen in range(ngen):
# Ranking
isort = np.argsort(PI)
# Selection
Rpop = Rpop[isort[isel[:]]][:]
sig = sig[isort[isel[:]]][:]
sig = sig*np.exp(np.random.random((lamb,Npar)))

# Variation of variables
Rpop = Rpop + np.random.random((lamb,Npar))*sig
Rminm = np.ones((lamb,Npar))*Rmin
Rmaxm = np.ones((lamb,Npar))*Rmax
imin = np.where(Rpop<Rminm)
imax = np.where(Rpop>Rmaxm)
Rpop[imin[:][0],imin[:][1]]=Rminm[imin[:][0],imin[:][1]]
Rpop[imax[:][0],imax[:][1]]=Rmaxm[imax[:][0],imax[:][1]]
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Evolutionary Strategies ES Performance Index (Eggholder function)

import random
import math
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D

def fitness_function(Rpop):
npop = Rpop.shape[0]
npvar = Rpop.shape[1]
PI = np.zeros((npop))
# Eggholder
for ip in range(npop):

x = Rpop[ip][:]
PI[ip] =(-(x[1] + 47) * np.sin(np.sqrt(abs(x[0]/2 + (x[1]  + 47))))

-x[0] * np.sin(np.sqrt(abs(x[0] - (x[1]  + 47)))))
return PI



Simulated annealing (SA) :
is a random-search technique which exploits an analogy 
between the way in which a metal cools and freezes 
into a minimum energy crystalline structure 
(the annealing process) and the search for a minimum 
in a more general system.

Numerical simulation of Annealing:
P(δE) = e(- δE/kT)

P(δE) : Probability of an increase in energy by δE
T : Temperature
k : Boltzmann’s constant
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Simulated annealing (SA) :

It forms the basis of an optimization technique for 
combinatorial and other problems.

Simulated annealing was developed in 1983 to deal with 
highly nonlinear problems.
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Simulated annealing (SA): 
SA approaches the global maximization problem similarly 
to using a bouncing ball that can bounce over mountains 
from valley to valley. It begins at a high "temperature" which 
enables the ball to make very high bounces,
which enables it to bounce over any mountain to access any 
valley, given enough bounces.
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Simulated annealing (SA): 
- SA's major advantage is an ability to avoid becoming 

trapped in local minima. 

- The algorithm employs a random search which 
not only accepts changes that decrease the 
objective function f (assuming a minimization 
problem), but also some changes that increase it. 

The latter are accepted with a probability
δf  =  f(xi+1) – f(xi)
p(δf) = exp ( - δf / T)
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Simulated annealing (SA): 

Thermodynamic Simulation Combinatorial Optimization
System States Feasible Solutions
Energy Objective
Change of State Neighboring Solutions
Temperature Control Parameter
Frozen State Heuristic Solution
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SA Algorithm: Part 1

Initial steps:
Solution Space S(x)
Objective Function  f(x)
Select Initial Point  xo in S
Select Initial Temperature  To
Select Temperature Reduction Function
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SA Algorithm:  Part 2
Iteration steps:
For i_iteration = 1,N_iteration

Generate New Solution  xi+1=xi + D u   D: max change u:R[-1 1]

Assess New Solution δf  =  f(xi+1) – f(xi), if δf < 0 or
Random number r : [0 1]  if r   < e-δf /Tk

Accept New Solution  (No: Continue / Yes: Update)

Update Di+1 = (1-a) Di +a w R

Adjust Temperature Exp. cooling scheme Tk+1 = α Tk (α = 0.95) 

End i_iteration (Terminate Search)
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SA Algorithm: 
xi+1=xi + D u

where u is a vector of random numbers in the range (-1,1) and 
D is a diagonal matrix which defines the maximum change 
allowed in each variable.
After a successful trial, i.e. after an accepted change in solution,
D is updated:

Di+1 = (1-a) Di +αω R
where α is a damping constant and controls the rate at which 
information from R is folded into D with weighting ω. R is a 
diagonal matrix the elements of which consist of the
magnitudes of the successful changes made to each control 
variable.
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SA Algorithm: 
For problems with integer control variables, the simple strategy 
whereby new trial solutions are generated according to the 
formula:

xi+1=xi + u 

where u is a vector of random integers in the range (-1, 1) often 
suffices.
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SA Algorithm: 
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Introduction: 

Particle swarm optimization (PSO) is a population based 
stochastic optimization technique developed by Dr. Eberhart
and Dr. Kennedy in 1995, inspired by social behavior of bird 
flocking or fish schooling.
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Introduction: 

PSO shares many similarities with evolutionary computation 
techniques such as Genetic Algorithms (GA). 

The system is initialized with a population of random solutions 
and searches for optima by updating generations. 

However, unlike GA, PSO has no evolution operators such as 
crossover and mutation. 

In PSO, the potential solutions, called particles, fly through the 
problem space by following the current optimum particles.
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Introduction: 

Each particle keeps track of its coordinates in the problem 
space which are associated with the best solution (fitness) it 
has achieved so far. (The fitness value is also stored.)
-This value is called pbest. 

Another "best" value that is tracked by the particle swarm 
optimizer is the best value, obtained so far by any particle in the 
neighbors of the particle. 
-This location is called lbest. 

When a particle takes all the population as its topological 
neighbors, 
-The best value is a global best and is called gbest.

Particle Swarm Optimization

Design and Optimization



Introduction: 

The particle swarm optimization concept consists of, 
- At each time step, changing the velocity of (accelerating) each 
particle toward its pbest and lbest locations (local version of 
PSO). 

- Acceleration is weighted by a random term, with separate 
random numbers being generated for acceleration toward pbest
and lbest locations. 

Particle Swarm Optimization

Design and Optimization



Method: 

The particle position and velocity update equations in the 
simplest form that govern the PSO are given by
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Algorithm: 
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