Non - Linear Optimization

Lecture Assignment 8 a)

Find the dimensions of a box of largest volume that can be
inscribed in a sphere of unit radius.

Let the origin of the Cartesian coordinate system
X1, X5, X3 be at the center of the sphere and the sides of the
box be 2x4,2x,, and 2x;.

The volume of the box is given by
f(x1,x2,x3) = 8x1X,x5

Since the corners of the box lie on the surface of the sphere
of unit radius, x1, x2, and x3 have to satisfy the constraint

xi+x5+x5=1
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Non - Linear Optimization

Lecture Assignment 8 a)

This problem has three design variables and one equality
constraint.

The equality constraint can be used to eliminate any one of
the design variables from the objective function

x3=\/1—x12—x§

or

f(x1,x2,x3) = 8x1x2\/1 — xf — x2

Design and Optimization - Classical Methods 15
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Lecture Assignment 8 a)

The necessary conditions for the maximum of f give

aof [ , x? i
_=8}‘ (1_'}‘.2_][2 1;“ . | =0
oxy L T T =2 =)
df i 1/2 -’fg |
—— = 8x | (1 —x7 —xH)1/? —= -1 =0
.} ] i ] FJ‘) ( l . '112 L 'r%)]flz |

equations can be simplified to obtain,

| —x7 —2x5 =0
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Non - Linear Optimization

Lecture Assignment 8 a)
Solving this gives
x; = x5 = 1/V3andhence x; = 1/V3.
This solution gives the maximum volume of the box as

8
fmax = Wi

To find whether the solution found corresponds to a
maximum or a minimum, we apply the sufficiency
conditions to f(x1,x2).

Design and Optimization - Classical Methods 17
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Lecture Assignment 8 a)

The second-order partial derivatives of f at (x; ,x; ) are

given by 92 f 39 e
= ——— dl lX;. X
E).l:% NE b
3% f 32
- = ——— at (x7, x5
xd st )
32 f 16
— — ——— at (x¥, x3
; 9x10x7 J3 1> 2)
dn
. ; 7
0 f 0°f 9% f ( 9° f )
— <0 and : — : >0
Jx7 dxi dx3  \9x19x2

Design and Optimization - Classical Methods 18



Non - Linear Optimization

Lecture Assignment 8 a)

)

. -}2 . 82 82 . 82 <

Since ‘ }; <0 and f j;_( ;f ) > ()
X7 dxi 0x3 dx1dx2

the Hessian matrix of f is negative definite at

(x1,x2)

Hence the point (x; ,x; ) corresponds to
the maximum of f.
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Method of Lagrange Multipliers

Multivariable optimization with equality constraints
Method of Lagrange Multipliers:

Problem with two variables and one constraint.

Minimize f (x4, x,)
subject to
g(x,x3) =0

For this problem, the necessary condition for the existence of
an extreme point at
X =Xx
1S
=0

of df/dxy Og )
dx;  dg/oxy dxi

{,1"]*‘. x3)
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Method of Lagrange Multipliers

Method of Lagrange Multipliers:
By defining a quantity A, called the Lagrange multiplier, as

) daf/dxa
A= — :
Ug/ﬂxz

(x], x3)
Equations can be expressed as
d 0g
L}-l{] d,‘l"l H_zlk x;::}
0 dg
( ( ‘f + }ll' C é) ) a 0
L}J.'z LL\"Q LTT, ¥

ra
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Method of Lagrange Multipliers

Method of Lagrange Multipliers:

In addition, the constraint equation has to be satisfied at the
extreme point, that is,

g(xr, -1‘E)|{A'f:..rﬁ*) =50

Notice that the partial derivative
has to be nonzero to be able to define A

Design and Optimization - Classical Methods 22



Method of Lagrange Functions

Method of Lagrange Function:
The necessary conditions are more commonly generated

by constructing a function L, known as the Lagrange function,

as L(xy,x2, ) = f(x1,x2) + Ag(xy, x2)

By treating L as a function of the three variables x4, x,, and,
the necessary conditions for its extremum are given by

JL _ of . 0g

— (X1, x2,A) = —(x1,x2) + A—(x1,x2) =0
dxq dxq 0X]

IL of 08

f_—(,\“l. X2, A) = f—f(.rl* x2) + A & (x1,x2) =0
dxo dx- dx2

dL

(x1,x2,A) = g(x1,x2) =0

aA
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Method of Lagrange Functions

Method of Lagrange Function:
The necessary conditions are more commonly generated

by constructing a function L, known as the Lagrange function,

as L(xy,x2, ) = f(x1,x2) + Ag(xy, x2)

By treating L as a function of the three variables x1, x2, and,
the necessary conditions for its extremum are given by

JL _ of . 0g

— (X1, x2,A) = —(x1,x2) + A—(x1,x2) =0
dxq dxq 0X]

oL Jf g

f_—(,\“l. X2, A) = f—f(.rl* x2) + A & (x1,x2) =0
dxo dx- dx2

dL

— (x1,x2, 1) = g(x1,x2) =0

oA
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Method of Lagrange Functions

Method of Lagrange Function:

The necessary conditions for general problem
Minimize f(x)

subject to
gix)=0, j=12,..m

The Lagrange function, L, in this case is defined by introducing
one Lagrange multiplier 4; for each constraint g;(x) as

L(x1,%0,..., %0, A1, A5, ..., Ay)
= f(x) +419:(x) + 2,9,(x) + -+ 4,9 (X)
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Method of Lagrange Functions

Method of Lagrange Function:
By treating L as a function of the n + m unknowns,
X1, X0, ey Xy A, Aoy ooy A,

the necessary conditions for the extremum of L, which also
correspond to the solution of the original problem are given by

m

oL of 0g;
—_— = — h;i—— =0, r=1,2,....n
0 X; 0x; i ZHJ 0x;
J=1
oL .
E:E;‘(X):U. Jj=1,2, ..., m

Equations represent n + m equations in terms
of then + munknowns, x; and 4; .

Design and Optimization - Classical Methods 26



Method of Lagrange Functions

Method of Lagrange Function:

The solution gives e e
-‘u‘l .!'.'v]
* n ok
X A
: 2 . y)
X*={ "¢ and A" =1 "}
* 1 %k
L \ﬁ L A'”? )

The vector X™ corresponds to the relative constrained
minimum of f(X) (sufficient conditions are to be verified)
while the vector A* provides the sensitivity information.

Design and Optimization - Classical Methods 27



Method of Lagrange Functions

Method of Lagrange Function

Sufficient Condition
A sufficient condition for f(X) to have a relative minimum
at X" is that the quadratic, Q, defined by

R n

9°L
0=) ) - ——dx; dx;

7. X
i=1 j=1" J

evaluated at X = X™ must be positive definite for all values
of dX for which the constraints are satisfied..
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Method of Lagrange Functions

Method of Lagrange Function

Sufficient Condition

It has been shown that a necessary condition for the quadratic
form Q, to be positive (negative) definite for all admissible
variations dX is that each root of the polynomial z; , defined by
the following determinantal equation, be positive (negative),
see next page, where,

)
Lij = ———(X*, 1%

dx; d
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Method of Lagrange Function

Liyw—z Ly Lz ... Ly g1 81 --- &mi
Ly Lyp—2z Ly ... Ly g12 82 --- &€m2

Lnl LHE Ln?i “u Lm;r — I 8ln 8n --- Smn
=0
g11 g12 813 ---  &ln O O ... O
821 g2 823 ... &m O O ... O
Eml Em?2 gm3 - -- Smn 0 0 ... 0
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Method of Lagrange Functions

Lecture Assignment #8 b

Find the dimensions of a cylindrical tin (with top and bottom)
made up of sheet metal to maximize its volume such that the

total surface area is equal to A, = 24m.
X1 : the radius of the base
X, : the length
Maximize f(xq,xp) = mxtx,
subject to 2mx% + 2mx x, = Ay = 24w

The Lagrange function is:

L(x1, X2, A) = wxixy + AQ2rxi 4+ 2w x1xy — Ag)

Design and Optimization - Classical Methods 31



Method of Lagrange Functions

Lecture Assignment #8 b

Necessary conditions:

oL X1X

— = 2mxy Xy + 4mxy + 2mAx, =0 > A = ——=

8x1 ZX1+XZ

OL _ 7x2 4 2mx > 1=-22 or x, =1x
1

ﬁ = 27TX1 + 27TX1X2 — AO — X1 = (a)

1 1

2A0\2 Ag \2

Xy = (—0) and A* = (—0 )
31T 2471

.. . . A3 \2
This gives the maximum value of f* = (ﬁ)z

1
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Lecture Assignment #8 b

Sufficiency conditions: 2L
1= — = 2mx; +4x)* =4n
IXT | x* a%)
9L . |
12 = - =Ly =2nx] 4+ 271" =21
dxi 3-1'2 (X* %)
%L
Ly»n=— =0
dx5 (X*, %)
] |
211 = il = 4 x{ + 27 x5 = 167

dx] (X*,A¥)

g1y = — = _J'TA"T = 4
(].5;'2 (X*,1%)
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Method of Lagrange Functions

Lecture Assignment #8 b
Sufficiency conditions: |
y 4r —z 2w 167
2 00—z 47| =0
1677 4 0
that is, 272mw%z + 19213 = 0
. 12
This gives Z = ——T
17

Since the value of z is negative, the point (x; , x5 )
corresponds to the maximum of f .
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Kuhn-Tucker Conditions

Multivariable optimization with inequality constraints

Minimize f (X)
subject to
giX) <0, j=12,....m

The inequality constraints can be transformed to equality
constraints by adding nonnegative slack variables, yjz

as gj(X) + yjz =0, j=12,....m

where the values of the slack variables are yet unknown.

Design and Optimization - Classical Methods 35



Kuhn-Tucker Conditions

Minimize f (X)
subject to
GX,Y)=gX)+y7=0 j=12,...m

where Y = {y;,¥5,..., v} is the vector of slack variables.

This problem can be solved conveniently by the method
of Lagrange multipliers.

m

LX, Y. M) =fX)+ Y 1G;(X. Y)
j=1

where A = {14, 4,, ..., 4,,,}T , is the vector of
Lagrange multipliers.
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Kuhn-Tucker Conditions

The stationary points of the Lagrange function can be found

by solving the following equations,

JL of — ., 0g;
—((X. Y.} = —(X j—=(X) =0,
8.1'5{ ) ox (X) + jZ_l:xj Py (X)

dL

iy o8
.

dA;

X. Y. 1) =G;(X.Y) =g;X)+y; =0,

oL +
— (X, Y,A) =24;y; =0, J=1,2,..., m
dy;

Design and Optimization - Classical Methods
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Kuhn-Tucker Conditions
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This represent (n + 2m) equations in the (n + 2m)
unknowns, X, A and Y. The solution gives the optimum
solution vector, X*; the Lagrange multiplier vector, A*; and
the slack variable vector, Y™.
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Kuhn-Tucker Conditions

the conditions to be satisfied at a constrained minimum
point, X*, can be expressed as

Jf 0g;
— Ai—==0. [ =1,2,..., n
JXx; Z ! d.x;
JEJ]
.:tj' > (), j & J]

These are called Kuhn-Tucker conditions, necessary
conditions to be satisfied at a relative minimum of f (X).
These conditions are, in general, not sufficient to ensure a
relative minimum.
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Kuhn-Tucker Conditions
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However, there is a class of problems, called convex
programming problems, for which the Kuhn-Tucker
conditions are necessary and sufficient for a global
minimum.

[f the set of active constraints is not known, the Kuhn-Tucker
conditions can be stated as follows:

m ‘
0

daf g;
— + A —— =0, i =1,2,..., n
3 x; Z 7 dx;
J=1
Ajz;j:{].:t j=1,2,....m
g; <0, J=1,2,...,m
A >0, J=1,2,...,m
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Kuhn-Tucker Conditions

Note that if the problem is one of maximization or if the
constraints are of the type g; = 0, the A; have to be

nonpositive.

On the other hand, if the problem is one of maximization
with constraints in the form type g; = 0, the A; have to be

nonnegative.
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When the optimization problem 1s stated as

Minimize f(X)

subject to
g;i(X) <0, J=1,2,....m

h(X) =0 k=1,2,...,p

the Kuhn—Tucker conditions become

m P
Vf‘FZ;‘Lngj — Zﬁkvt’?k =0
k=1

j=1

rjgji =0, J=1,2,...,m
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‘\g‘\slm’,

E HASKOLI [SLANDS o
%@‘ VERKFRZDI- OG NATTURUVISINDASVID K h T k C d t
,",Isaad\oe IDNADARVERKFRADI-, VELAVERKFRADI- u n = u C e r O n 1 1 O n S

0G TOLVUNARFRABIDEILD

RO

ngO, J=1,2,....m
h, = 0, k=1,2,...,p
lji_:-O, J=1,2,....m

where A; and By denote the Lagrange multipliers associated with the constraints
g; <0 and hy =0, respectively. Although we found qualitatively that the
Kuhn—-Tucker conditions represent the necessary conditions of optimality, the
following theorem gives the precise conditions of optimality.
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