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a b s t r a c t

Intrusion detection systems (IDS) differentiate the malicious entries from the legitimate entries in
network traffic data and helps in securing the networks. Deep learning algorithms have been greatly
employed in the network security field for large scale data in modern cyberspace networks because
of their ability to learn the deeply integrated features. However, learning both space and time
aspects of system information are very challenging for any individual deep knowledge model. While
Convolutional Neural Networks (CNN) effectively acquires the spatial aspects, the Long Short-Term
Memory (LSTM) neural networks perform better for temporal features. Integrating the benefits of these
models has the potential for improving the large scale IDS. In this paper, a high accurate IDS model
is proposed by using a unified model of Optimized CNN (OCNN) and Hierarchical Multi-scale LSTM
(HMLSTM) for effective extraction and learning of spatial–temporal features. The proposed IDS model
performs the pre-processing, feature extraction through network training and network testing and final
classification. In the OCNN–HMLSTM model, the Lion Swarm Optimization (LSO) is used to tune the
hyper-parameters of CNN for the optimal configuration of learning spatial features. The HMLSTM learns
the hierarchical relationships between the different features and extracts the time features. Lastly, the
unified IDS approach utilizes the extracted spatial–temporal features for categorizing the network data.
Tests are performed over public IDS datasets namely NSL-KDD, ISCX-IDS and UNSWNB15. Assessing
the performance of OCNN–HMLSTM against the contemporary IDS methods, the proposed model
performs better intrusion detection with high accuracy of above 90% with less false values and better
classification coefficients.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

Recent developments in the field of information coupled with
he advanced communication paradigms led to the increasing
umber of online services. These online service systems rely on
etwork technology for advancements which increases network
ecurity issues. The critical constituents of the communication
etwork are confidentiality, integrity and availability. Any ab-
ormal activity is termed based on the impact it creates on the
ompromise of these constituents. These abnormal activities are
alled network intrusions and are considered illegal. Intrusion
etection system (IDS) [1] has been the saviour against these
ntrusion attacks and often coupled with the general security
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framework of the network. The IDS model acts as the scrutiny
model for monitoring the security threats in the network traffics.
The typical IDS model monitors all the inbound and outbound
traffic packets for finding the signs of abnormal traffic for in-
trusions. A robust IDS model can recognize maximum properties
of the intrusion actions and can automatically warn the server
system for alerting the entire network [2]. For ensuring sophis-
ticated monitoring, the IDS model combines the software and
hardware devices based on a specified set of security policies. An
ideal IDS model must be able to detect the intrusions dynamically
and enable effective protection against all different patterns of the
attack strategies.

Based on the dynamic detection property of the IDS, they
are categorized into three types namely, misuse detection ap-
proach or signature-based system (SBS) [3], anomaly-based sys-
tem (ABS) [4] and stateful protocol analysis technique [5]. SBS
has been built using the digital signature matching process which
compares the packet signature with the attack signature database
to identify the intrusion. If a traffic packet is suspected of intru-
sion, its signature is matched against the database and if there
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s a similarity, the alarm is outstretched. As the SBS involves the
se of a database for attack knowledge analysis, it is also called
nowledge-based IDS. Due to these benefits, the SBS achieves
igh accuracy of detection with a minimum false positive rate.
ut it has limitations in handling the unknown attacks with new
ttack strategies. The other approach, ABS is based on the attack
ehaviour analysis where the attacks are identified through com-
arison of attack behaviour against the normal traffic behaviours.
BS helps in identifying unknown attacks more effectively than
he SBS but it cannot differentiate the anomaly in certain cases
here the attacker imitates the normal behaviour. The stateful
rotocol analysis technique incorporates the benefits of both
he SBS and ABS techniques [6]. Unlike the SBS and ABS, this
echnique identifies the attacks using the signature as well as
he behaviour at the communication protocol stage itself. The
DS model proposed in this article is also based on this idea
f integrating both the misuse detection and anomaly detection
pproaches.
Conventional approaches such as encryption, access control,

irewalls and anti-attack software models were the staple of tra-
itional intrusion detection. These approaches were effective for
mall scale attack identification while has limitations in detecting
large number of attacks and results in high false detections.
articularly, the hackers initiate the Denial-of-Service (DoS) vul-
erabilities [7] in large numbers which are hard to distinguish
nd protect via conventional techniques. Most recent studies
ave shifted their focus on integrating the machine learning (ML)
lgorithms for intrusion detection [8,9]. They tend to escalate the
ecognition rates besides diminishing the overhead in handling
arge scale attacks, unlike the conventional methods. Support
ector Machine (SVM) [10,11] can predict the target attacks in
he test dataset using the attributes of the training data and is
lso memory efficient. The IDS model using SVM has the simpler
esign of the prediction model using the hyperplanes and ker-
el functions to determine the attack class. K-nearest neighbour
KNN) [12] provided a fast and efficient design with low com-
lexity. It assigns the data as samples in search space and applies
he single or multidimensional feature vector for determining the
eighbouring samples having the closest resemblance as the nor-
al or attack class. Naïve Bayes [13] employs the simplest form
ayesian probability model with independent assumptions on the
ttributes and the bias and variance to reduce the error rate
n detecting the attacks. Random forests algorithm [14] utilizes
he embedded feature selection method and intrinsic metrics
o rank features for attack class categorization. It also reduces
omplexity and memory utilization. Other algorithms such as k-
eans clustering and logistic regression employ the clustering
nd regression designs for determining the attack classes. Still,
he standard ML algorithms have serious limitations in learning
he deeply integrated features of the attacks [15]. Additionally,
hese algorithms provide less performance for noisy and high
imensional traffic data. Hybrid ML algorithms were developed
y merging two or more ML algorithms for IDS but the model
omplexity is high which makes them less efficient. Similarly,
he artificial neural networks (ANN) [16] and extreme learning
achine (ELM) [17] also increase the complexity issues. Some
ariants of ELM [18,19] were found to be effective for intrusion
etection but the extensive training time is often a big problem.
Recently, deep learning (DL) algorithms are taking the centre-

tage in intrusion detection. The intrusion recognition models
hat are constructed on non-linear structured DL systems like
NN [20], recurrent neural networks (RNN) [21], LSTM [22],
tc. have provided higher learning behaviours and increased
he intrusion detection accuracy rates [23–28]. Recent years has
lso seen upgrades in the hardware architectures to support the

L models for their generous security improvements.CNN based
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models have utilized shift-invariant, shared-weight architecture
of convolution kernels to scan the hidden layers and other char-
acteristics. CNN regularized the multi-layer perceptron and hence
utilize fully connected networks to determine the attack class.
However, certain aspects of this fully connected network result in
over-fitting data. RNN based IDS models utilize the feed-forward
neural network structure with the internal memory dedicated to
processing the lengthy-time sequences of the input traffic data. It
includes the feedback loops to control the state of operation and
improve the learning rate. LSTM is an RNNmodel that can be used
for IDS to process sequences of traffic data. Unlike standard RNN,
LSTM constitutes the feedback connections that are well suited
for intrusion detections with temporal features. Extensive re-
searches on the DL based IDS models have shown some important
revelations. The non-linear deep architecture of CNN and LSTM
helps extract the features of network traffics [29–31]. CNN has
provided high detection accuracy by learning the deep spatial fea-
tures through spatial correlations with faster learning rates [32].
However, it is found that CNN does not automatically learn the
temporal features and hence certain parameter and model tuning
are required. As temporal features have become vital behavioural
features for detecting the attack patterns, they need an additional
architecture for learning the long-term dependencies in the tem-
poral features [33]. LSTM is the special class of RNN that can
learn the time features from network traffics more effectively
with their short term sequence memory. However, LSTM takes
more training time and also requires more resources than CNN
and also has limited knowledge of past information [34].

These investigations reveal the efficiency of CNN namely high
accuracy and faster training time while accurate and effective
processing of time features are the strengths of LSTM. Integrat-
ing these two models can help in harvesting their benefits and
even overcoming their limitations. Additionally, tuning the hyper-
parameters of CNN can also be efficient. Many studies have used
this strategy of optimizing the CNN parameters. In [35], an op-
timal trajectory using fuzzy multi-objective transcription is pro-
posed and utilized to optimally train the deep neural network
(DNN) to model it as the optimal command generator. In [36],
pre-generated trajectory ensemble optimization is used to train
the DNN for establishing optimal feedback actions for the func-
tional relationship between optimized systems states and de-
sign controls. In [37], a DNN model is used with a desensitized
trajectory optimization method to obtain the optimal parking
trajectories with initial uncertainty. These approaches optimized
the DNN to obtain the feedback actions for controlling the auto-
matic parking. The common advantage of these techniques is the
optimization of the parameters of DNN to improve design control.
Based on these studies, a hybrid DL model is proposed in this
paper in which CNN is optimized using Lion Swarm Optimization
(LSO) [38]. This improves the training speed of CNN for large
scale network data. Likewise, the LSTM model is modified by
adapting the hierarchical structure for multi-scale network data.
Comparing with [35–37] and other popular optimization algo-
rithms, the LSO has better global probability convergence and has
provided global optimal solutions with high precision [38]. These
advantages of LSO over the other optimization algorithms have
led to its usage in this paper. Therefore, an advanced unification
model of OCNN–HMLSTM is developed in this study by jointly
using the optimized CNN and HMLSTMmodels. The vital offerings
of this study are:

• The development of efficient IDS using a novel unified DL
model of OCNN–HMLSTM. It is a joint model that exploits
the deep learning patterns of CNN and LSTM, for learning
both the spatial–temporal features.
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• The hyper-parameters in CNN of the proposed OCNN-
HMLSTM are tuned using the new meta heuristic of Lion
Swarm Optimization which increases the learning rate for
spatial features while HMLSTM learns the temporal features.
• The evaluations are performed on three popular and large

scale public IDS datasets of NSL-KDD, ISCX-IDS and
UNSWNB15 using the MATLAB tool.
• The existing IDS models based on ML and DL models are

evaluated for performance comparisons which showed that
the proposed OCNN–HMLSTM accurately detects the attacks
and outperforms the other models during cross-validation
tests.

This research article is structured as: Related study in Section 2.
The description of the proposed OCNN–HMLSTM and their imple-
mentations are explained in Section 3. Performance results and
comparative investigation are illustrated in Section 4. Inferences
of this research and possible future instructions are given in
Section 5.

2. Related works

The last decade has seen a surge in the usage of ML and DL
algorithms for IDS models. The ability to provide good predictive
accuracy through effective feature learning has been the major
advantage in these learning-based IDS models. Most existing IDS
models have been based on supervised learning models. SVM has
been used predominantly for IDS. Wang et al. [10] utilized SVM
with feature augmentation for IDS and evaluated it on NSL-KDD
with 99.18% accuracy, 99.85% detection rate and 2.96% false alarm
rate. Similarly, Usha and Kavitha [11] also utilized the SVM based
IDS model which was evaluated on the AWID dataset to achieve
99.25% accuracy, 99% precision, 1.2% false-positive rate within
1.6 h of learning time and 0.85 h testing time.K-nearest neighbour
(KNN) has been used by Meng et al. [12] for constructing alarm
filter of IDS model which was tested on DARPA1999 dataset
with 88.6% accuracy and 86.3% f-measure with CPU workload
threshold rate of 89%. Likewise, Serpenand Aghaei [39] also uti-
lized KNN for the IDS model via Principal component analysis
(PCA) feature selection for the ADFA-LD dataset and achieved
99.5% accuracy, 99.8% true positive rate, 99.7% true negative rate,
0.3% false-positive rate and 0.2% false-negative rate. Mukherjee
and Sharma [13] used Naïve Bayes based IDS for the NSL-KDD
dataset and achieved 97.78% detection accuracy, 97.8% true posi-
tive rate and 2.2% false-positive rate. K-means clustering has been
employed for real-time live attack detection in wireless sensor
networks [40] with 1.2% false-positive rates. Aunga and Min [41]
applied the K-means algorithm for intrusion detection from the
KDD99 dataset and provided a detection accuracy of 99.8% and
0.3% false-positive rate. Farnaazand Jabbar [14] developed IDS
using Random forests and applied it on NSL-KDD to achieve
99.67% precision and 0.8% false-positive rate. Peng et al. [42] used
the Decision tree (DT) for KDD99 and detected the intrusions
with 88% accuracy and a calculation time of 3.4 s. Besharati
et al. [43] utilized logistic regression NSL-KDD and detected the
attacks with 97.5% accuracy. Although high overall accuracy rates
are obtained, these machine learning algorithms have low detec-
tion rates for many attack types especially the U2R and R2L in
NSL-KDD and KDD datasets and also the balance between false
positives and negatives are uneven in most methods with false
positives increasing with decreasing false negatives.

Some studies applied hybrid machine learning and advanced
machine learning algorithms to reduce false positives. Teng et al.
[44] developed SVM-DT-based collaborative IDS which were eval-
uated on KDD99 with 89.02% detection accuracy, 12% error rate
and consuming 7.25 s training time. Tao et al. [45] developed Fea-

ture selected Weight and Parameter optimized-SVM (FWP-SVM)
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using the genetic algorithm for intrusion detection on KDD99
and achieved 96.61% accuracy, 0.07% false negatives and 3.39%
false positives with a minimum classification time of 5.078 s and
2.4% error rate. Zhang et al. [46] developed Gaussian Naïve Bayes
(GNB) for network IDS and tested it on the KDD99 dataset for
which it achieved 91.06% accuracy and 0.494 s detection time.
Mazini et al. [47] developed a hybrid artificial bee colony (ABC)
and Ada Boost algorithms for anomaly detection in NSL-KDD and
ISCXIDS2012 datasets with 98.9% detection accuracy, and 1.1%
false-positive rate. Khraisat et al. [48] proposed an ensemble of
hybrid IDS using C5 classifier and One-Class SVM classifier. This
hybrid model was tested on the Bot-IoT dataset and achieved 94%
malware detection and overall accuracy of 99.97%.

Advanced machine learning-based IDS techniques include neu-
ral networks based techniques. Shenfield et al. [16] utilized ANN
on benign network traffic dataset and achieved 98% accuracy,
sensitivity 95% and 1.8% false positives. Baig et al. [49] utilized
multiclass cascaded ANN on KDD99 with 98.25% accuracy, the
false-positive rate of 3.77% and the false-negative rate of 1.26%
and the UNSWNB15 dataset with 86.4% accuracy and 2.8% false-
positive rate. Sumaiya Thaseen et al. [50] used an integrated
model of Neural Networks with correlation-based feature selec-
tion for IDS on NSL-KDD and UNSWNB15 datasets. This neural
network resulted in 98.45% accuracy and 500 s of computation
time for NSL-KDD and 96.4% accuracy and 660 s computation
time for UNSWNB15.Atli et al. [17] used an extreme learning
machine (ELM) on ISCX-IDS 2012 dataset with 99% detection
accurateness and 1% false-positive rate with 42.12 s training
time. Singh et al. [18] utilized online sequential ELM (OSELM)
on NSL-KDD with an accuracy of 98.66% and a false-positive
rate of 1.74% are achieved in 2.43 s detection time while Gao
et al. [19] used incremental ELM (I-ELM) on NSL-KDD with 81.22%
accuracy, 30.03% false alarm rate and 19.97 s detection time and
UNSWNB15 dataset with 77.36% accuracy, 36.09% false alarm
rate and 476.18 s detection time. Although efficient than the
conventional and hybrid machine learning algorithms, the NN
and ELM models have limitations in handling larger datasets due
to their shallow architecture that reduces their ability to abstract
the DL features of network data.

Numerous studies have been conducted using DL algorithms
as an IDS tool. Yin et al. [23] developed RNN for intrusion de-
tection which was applied on the NSL-KDD dataset and achieved
97% accuracy and 1765 s training time. Kim et al. [24] used CNN-
based IDS for DoS attacks which were applied on KDD99 with
99% accuracy and CSE-CIC-IDS2018 with 91.5% accuracy. Nguyen
and Kim [25] used genetic CNN based IDS for the NSL-KDD
dataset in which the attacks were detected at 98.2% accuracy,
0.52% false-positive rate and 95.44% true positive rate. Althubiti
et al. [26] employed LSTM for IDS which was tested on the
CIDDS dataset with 85% accuracy and 17.22% false-positive rate.
Likewise, Chawla et al. [27] employed Bidirectional LSTM for the
ADFA dataset with 90% accuracy and 25% false alarm rate. Amar
and Ouahidi [28] used Weighted LSTM on ISCX-UNB with 97%
accuracy, 22% loss and 1.47% false alarm rate. Apart from CNN
and RNN/LSTM, many other DL algorithms have also been used
individually or joint with other algorithms for intrusion detection.
However, CNN and LSTM have always provided better attack
detection in most of the intrusion datasets. Still, they also suffer
from certain limitations mentioned in the previous section. To
alleviate their limitations, some authors have tried using hybrid
models or unified models. Khan et al. [29] developed Convolu-
tional LSTM (Conv-LSTM) for the IDS model which was tested on
the ISCX-UNB dataset with 97.29% accuracy and 0.71% false alarm
rate.

As described earlier, the extraction of spatial–temporal fea-

tures can significantly enhance intrusion detection but it is quite
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ata distribution in the NSL-KDD dataset.
Set Total Normal DoS Probe R2L U2R

KDDTrain+ 125973 67343 45927 11656 995 52
KDDTest+ 22544 9711 7458 2421 2754 200
KDDTest−21 11850 2152 4342 2402 2754 200

challenging. Wang et al. [30] employed DNN to learn spatial–
temporal features. It was applied on DARPA1998 and ISCX2012
with 99.8% accuracy and 0.22% false alarm rate with 1.7 min
detection time. Similarly, Zhang et al. [31] developed a combined
model of multi-scale CNN (MSCNN) and LSTM for intrusion detec-
tion. It was tested on the UNSWNB15 dataset and achieved 95.6%
accuracy, 9.8% false alarm rate and 1.6% false-negative rate with
1060 s computation time. However, both these models suffer
from limitations in handling the imbalanced datasets. Considering
the limitations of [30] and [31], and also analysing the benefits
of [29], a unified DL model named OCNN–HMLSTM has been
proposed in this article. It is intended to tackle these limitations
and exploit the benefits of both CNN and LSTM for intrusion de-
tection in three different datasets. This will be helpful especially
in environments where multiple traffic patterns are experienced
due to the multiple applications that are run at the same time.

3. Materials and methodology

The proposed OCNN–HMLSTM model for intrusion detection
utomatically uses the properties of CNN and LSTM for extract-
ng the spatial–temporal aspects of network traffic data. Then
MLSTM performs the final classification using these two set
f features. The spatial–temporal features integration using the
CNN–HMLSTM model is shown in Fig. 1.

.1. Datasets

In most studies, the IDS models were developed focusing on
ultiple attacks on a single intrusion detection dataset. Not all

he ideal IDS models performed similarly on different datasets.
ost IDS models are suitable for specific datasets only while
erforms poorly for another dataset. Hence in this work, three
rominent intrusion detection public datasets will be used to test
he proposed OCNN–HMLSTM. The principal objective is design-
ng adaptive IDS that can perform comparatively better in most
atasets with various attacks. It is also important to select the
ppropriate datasets since they are vital in the evaluation process
f the IDS. The three datasets selected for this work are NSL-KDD,
SCX-IDS 2012 and UNSWNB15.

SL-KDD dataset: It was generated in 2009 as an alternative to
he popular KDDCUP99 dataset. KDDCUP99 was been utilized for
ore than two decades. As KDDCUP99 has characteristic repli-
ated entries, the researchers developed NSL-KDD as an improved
DD. It also does have a sensible quantity of data entries for
reparation and assessment, so that the classification does not
epend on frequent records. The NSL-KDD contains I training—
DDTrain+ and 2 testing—KDDTest+ and KDDTest−21 sets, con-
aining diverse legitimate entries and four primary categories of
ttacks. Table 1 displays the classes and the sum of records in
very category of NSL-KDD.
As shown above, the NSL-KDD has one normal class and four

ttack classes namely DoS, R2L (Root to Local attacks), U2R (User
o Root attack), and Probe attacks. It contains 41 aspects and one
lass label for each traffic data. NSL-KDD includes 10 basic, 12
ontent and 19 traffic features.

SCX-IDS 2012: This dataset was created with seven kinds of
atasets collected for 7 days of a week in June 2010. It in-
ludes two profiles: α and β profiles. While α profile introduces
4

Table 2
Data distribution in ISCX-IDS 2012.
Network flow Training Testing

Normal Malicious Normal Malicious

Friday 55640 0 24500 0
Saturday 85222 1353 45889 1353
Sunday 220024 9833 42345 875
Monday 108945 2451 58664 1320
Tuesday 347308 24295 187012 13083
Wednesday 339470 0 182793 0
Thursday 255054 3381 137338 1822

Table 3
Data distribution in UNSWNB-15.
Class Training set Testing set Testing set A

Normal 56000 37000 2485
Reconnaissance 10491 3496 457
Backdoor 1746 583 233
Worms 130 44 44
Analysis 2000 677 301
Shellcode 1133 378 255
Generic 40000 18871 457
Fuzzers 18184 6062 457
Dos 12264 4089 457
Exploits 33393 11132 457

Total 175341 82332 5576

anomalous behaviour in the network, the β profile represents
the features and mathematical distributions of the procedures. It
includes four attack scenarios namely intrusion from the inside,
HTTP, DoS, DDoS, and brute force Secure Shell (SSH). It contains a
total of 2,381,532 normal records and 68,792 malicious records.
Table 2 shows the class distribution of ISCX-IDS.

UNSWNB-15 dataset: This dataset contains a mixture of real
recent legitimate activities and malicious attack behaviours. It
includes nine attack categories namely, Fuzzers, Analysis, Back-
doors, DoS, Exploits, Generic, Reconnaissance, Shellcode and
Worms. There are 44 aspects deprived of a class label for each
traffic records. It includes basic, content, Time, additional features
and 1 attack class. Table 3 shows dataset numbers for training,
testing and testing after sampling.

3.2. Pre-processing

Pre-processing comprises data tuning and normalization. It
anticipates enumerating and regularizing the data. In the original
dataset, particular point values are symbolic, continuous and
many other types. These values must be converted to numerical
type for the processing of data. Likewise, some of the values may
not in the specified range due to different representation. For
example, an attribute might be represented with three decimal
values while other attributes by 2 decimal values. These must be
normalized to support the linear handling of the data.

3.3. Spatial feature processing using OCNN

CNN is engaged in this work to study the spatial features by
mapping inputs as level flow images. The proposed OCNN model
is developed by optimizing the parameters of CNN using LSO.
Fig. 2 illustrates the organization of CNN that will be optimized.
CNN comprises four main operators namely Convolution, pool-
ing layer, and fully connected layer and non-linear activation
function.

Convolution layer (CL): It forms the major core of CNN that
analyses and extracts the desired features. This convolution task
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Fig. 1. Spatial–temporal features integration in OCNN–HMLSTM intrusion-detection model.
Fig. 2. Structure of CNN.
onserves the spatial connection amongst the input data by ac-
uiring the aspects by the kernel function. The outcome of the
L will be the convolved aspect plot. The kernel points are up-
ated automatically based on the optimal structure configuration.
he magnitude of the aspect plot is reliant on the depth of the
ayers.

on-linear activation (NLA): After the convolution operation,
he additional nonlinear function is used before the creation of
eature maps. The NLA can either be tanh, sigmoid or Rectified
inear Unit (ReLU). This NLA acts as the element-wise task to
5

compromise the negative points of the aspects. In most cases, the
sigmoid or ReLU provided better performance.

Pooling layer (PL): Spatial pooling is the sub-sampling or down-
sampling process in CNN, performed to reduce the dimensionality
of the feature maps. It is similar to the feature reduction pro-
cess that removes the less important data while retaining vital
information. Kinds of pooling are average, max, stochastic and
sum pooling denoted by the pooling numbers 1–4. In most cases,
max-pooling provides the most important features.

Fully-connected Layer (FCL): It is a conventional multi-level
neural layer employing a softmax initiation utility in the outcome
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yper-parameter value ranges in CNN.
Hyper-parameter Range Difference

CL 1–4 1
PL 1-Nc 1
FCL 2–5 1
Hidden units/layer 256–1024 256
Pooling type 1–4 1

layer. The FCL has the preceding layer nodes interlinked with the
succeeding layer nodes. The complex aspects yielded from CL and
PL are used by this FCL for labelling the data into classes using the
past learning knowledge.

Combining all these operators, CNN is formed. The hyper-
arameters used in CNN are listed in Table 4. LSO is used to op-
imize these parameters. Here Nc denotes the maximum number
f convolutional layers.
LSO [38] is based on the intelligent characteristics of three in-

abitants including shielding lion, hunting lioness and dependent
ubs.LSO converges fast and is not easily trapped into a locally
ptimal solution. For performing the LSO, initially, a random con-
iguration is set for OCNN. A proportion factor of adult lions as β is
rbitrarily assigned. When β is small, the proportion of lion cubs
s large, thus improving the detective ability and increases the
iversity of the population. For quick convergence, the β value is
et below 0.5. Similarly, a disturbance factor α is determined to
mprove the exploration ability (divergence). α is calculated as

= step. exp
(
−

30t
T

)10

(1)

Here t is the current iteration, T denotes maximum iterations
and step denote the largest step of the lion in motion. When
α > 1, the speed of movements increase over time and the
lions hardly adjust their direction to reach the optimum solution
and the swarm diverges. When α = 0, the speed movement
rops towards zero and the lions move aimlessly without knowl-
dge of the previous motion. When α ≪ 1, less momentum is
ttained from the previous stage and direction changes quickly
o adjust the reset process. The increase of disturbance factor
alances the local search ability and global search ability and
ccelerates the convergence speed by avoiding the premature
roblem. In this manner, the LSO analyses and determines the
ptimal configuration. Algorithm 1 shows the LSO process.

Based on the LSO, the CNN architecture is modified. The
eight initialization is performed using the LSO before the fitness
6

Table 5
Top configurations of OCNN obtained using LSO.
Layer type Configuration

OCNN configuration 1
CL 2 layers
PL 2 layers; max pooling
FCL 3 layers; 512 units
Error rate 18.3

OCNN configuration 2
CL 3 layers
PL 3 layers; max pooling
FCL 3 layers; 512 units
Error rate 17.5

OCNN configuration 3
CL 3 layers
PL 1 layer;max pooling
FCL 2 layers; 256 units
Error rate 18.8

OCNN configuration 4
CL 4 layers
PL 2 layers; max pooling
FCL 3 layers; 1024 units
Error rate 17.2

evaluation. Then the individual will be decoded and trained with
k epochs for the CNN in the training process to obtain different
error rates. While many configurations for the OCNN are found by
the tuning process, LSO selects the configuration with a minimum
error rate. The top four configurations for OCNN obtained using
LSO are shown in Table 5.

Considering the configurations from the above table, the OCNN
configuration with less error rate is chosen. In this case, OCNN
configuration 4 has less error rate of 17.2 and hence it will
become the optimal CNN architecture. This model will perform
similar to the model designed manually by human experts. This
OCNN can extract the spatial features by setting many kernels of
varying sizes. The most common kernels are the convoluted 1*1,
2*2, and 3*3 kernels among which the 2*2, and 3*3 kernels learn
the features accurately while 1*1 kernel helps in increasing the
learning rate.

3.4. Temporal feature learning and classification using HMLSTM

LSTM neural network is often used to extract the time domain
aspects in time-series data. In this work, a modified LSTM named
HMLSTM is utilized for this purpose. HMLSTM has many varia-
tions. In this work, the HMLSTM modelled by Zhao et al. [51]
has been tweaked for the IDS model requirements. The general
LSTM uses three gates to get inputs and processes them with
the sigmoid activation function. In this HMLSTM, a parameterized
boundary detector is introduced which obtains binary output
value in each layer for learning the termination conditions to
get the temporal features. Additionally, the dense connections
are introduced to allow the layer ℓ to absorb the feature maps
of all previous layers as input and produce a concatenation of
feature maps. This process improves the spatial feature learning
property of the LSTMmodel to increase the classifier efficiency for
intrusion detection. When the boundary detector is set as 1 at a
time step of layer ℓ, the HMLSTM model considers it as the end
segment and feeds the summarized representation into the upper
layer (ℓ + 1) i.e. the narrower dense layers for spatial learning.
Based on the boundary states, the layers select any one operation
from (Update, Copy or Flush). First, the standard LSTM equations
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ates and candidate:

⎡⎢⎢⎢⎢⎣
it

ft

ut

ot

⎤⎥⎥⎥⎥⎦ = Wxt + Uht−1 + b (2)

Cell state: ct = ct−1 ⊙ σ (ft)+ tanh(ut )⊙ σ (it) (3)

Hidden state: ht = σ (ot)⊙ tanh (ct) (4)

Here xt denotes the current input to LSTM, ht−1 denotes pre-
vious hidden state, and ct−1 denotes the previous cell state.
These three parameters are the input to the LSTM. it , ft , ut and
ot represent the input, forget, candidate activation and output
gates, respectively. W and U are the weight matrix and activation
function matrix, respectively, while b denotes the bias.

Adding the boundary detector variable (zt ) to these standard
functions,⎡⎢⎢⎢⎢⎢⎢⎢⎣

it

ft

ut

ot

zt

⎤⎥⎥⎥⎥⎥⎥⎥⎦
= Wxt + Uh1

t−1 + zt−1Vh2
t−1 + b (5)

Here zt−1 is the previous boundary variable with ℓ = 1;
xt becomes the input at the current time-step for bottom-up
connection, (h1

t−1, c
1
t−1) denoting the hidden and cell states in

recurrent connection with ℓ = 1, h2
t−1 denoting hidden state in

top-down connection with ℓ = 2 and V denoting the activation
boundary matrix.

The proposed HMLSTM model having L layers (ℓ = 1, 2, . . . , L)
and at each layer, the update process is performed at time t

hℓ
t , c

ℓ
t , z

ℓ
t = f ℓ

HMLSTM (cℓ
t−1, h

ℓ
t−1, h

ℓ−1
t , hℓ+1

t−1 , z
ℓ
t−1, z

ℓ−1
t ) (6)

The function f ℓ
HMLSTM denotes the forget gate of HMLSTM which

is determined by the two boundary states zℓ
t−1, z

ℓ−1
t . The cell

states can be updated as

cℓ
t =

⎧⎪⎨⎪⎩
f ℓ
t ⊙ cℓ

t−1 + iℓt ⊙ gℓ
t if zℓ

t−1 = 0 and zℓ−1
t = 1 (Update)

cℓ
t−1 if zℓ

t−1 = 0 and zℓ−1
t = 0 (Copy)

iℓt ⊙ gℓ
t if zℓ

t−1 = 1 (Flush)

(7)

Here g denotes the cell proposal vector. Unlike the stan-
dard LSTM, the forget, input and output gates are needed to be
computed at every time step along with g .

The Update operation is executed to update the summary
illustration of the layer ℓ if the boundary zℓ

t−1 is found at the
bottom layer but zℓ−1

t not present in the previous time step. This
case occurs very rarely and hence Update operation is sparsely
used. The copy operation simply performs (h1

t , c
1
t )← (h1

t−1, c
1
t−1)

which means the top layer stays unchanged until the bottom
layer summarized input is received. The Flush operation has two
sub-tasks: Eject to bypass the current state and reach the top
layer while RESET operation to reinitialize the states at every new
segment. This means Reset allows the top layer to absorb the
bottom layer summary but deletes it if Eject is not performed.

The gate values (f ℓ
t , iℓt , o

ℓ
t ), cell proposal gℓ

t and the pre-
activation of the boundary detector z̃ℓ

= hardsigm(Uhℓ) can be
t t

7

Fig. 3. Gating operation of HMLSTM.

Fig. 4. Output module of HMLSTM.

determined at each operation by the slice function⎡⎢⎢⎢⎢⎢⎢⎢⎣

f ℓ
t

iℓt
oℓ
t

gℓ
t

z̃ℓ
t

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

sigm

sigm

sigm

tanh

hardsigm

⎤⎥⎥⎥⎥⎥⎥⎥⎦
fslice(s

recurrent(ℓ)
t +stop−down(ℓ)

t +sbottom−up(ℓ)t +b)

(8)

Here

recurrent(ℓ)
t = Uℓ

ℓh
ℓ
t−1 (9)

top−down(ℓ)
t = zℓ

t−1U
ℓ
ℓ+1h

ℓ+1
t−1 (10)

bottom−up(ℓ)
t = zℓ−1

t W ℓ
ℓ−1h

ℓ−1
t (11)

As the HMLSTM uses a top-down connection from layer ℓ+ 1
o ℓ, the activation is possible only when the boundary is detected
t the previous time step. This ensures that the layer is initialized
ith more long-term dependencies. The gating operations of the
MLSTM are given in Fig. 3. The output module for the HMLSTM
earning temporal features with three layers can be obtained as
hown in Fig. 4.
The binary boundary state zℓ

t is determined as

ℓ
= f (z̃ℓ) (12)
t bound t
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t can be modelled using the deterministic step function

ℓ
t =

{
1 if z̃ℓ

t > 0.5

0 otherwise
(13)

Thus the HMLSTM model can be formulated and used to learn
he long term dependencies of the temporal features and the
patial features with the short term memory.

.5. Model uncertainty of OCNN-HMLSTM

The model uncertainty is the standard deviation of the results
hat provide spatial information at which point the model is
ncertain. It occurs when the training data is insufficient or not
roper. Model uncertainty is estimated from the network trained
ith a Monte Carlo dropout rate of 50% in each hidden layer [52].

t is estimated by applying to global uncertainty scores namely
onte Carlo dropout uncertainty and Dice uncertainty. Monte
arlo dropout uncertainty provides the score of how certain or
ncertain the model based on the given input data. High Dice
ncertainty ensures that the model is less certain of the obtained
esults and is highly variable. It is done by using the Monte Carlo
ropout U-Net architecture which is trained using the Dice loss
unction and the Monte Carlo dropout is turned on. For testing
he uncertainty, the three intrusion datasets are used. For testing,
he Monte Carlo dropout uncertainty inference is performed 1000
imes to obtain 1000 results. Then the values of Monte Carlo
ropout uncertainty and Dice uncertainty are calculated. Then
inear regression is performed to determine the relationship be-
ween the Monte Carlo dropout uncertainty and Dice uncertainty.
t is found that the Monte Carlo dropout uncertainty and Dice
ncertainty agreement have achieved the values of 0.01, 0.005
nd 0.0033 for NSL-KDD, ISCX-IDS 2012 and UNSW-NB15, respec-
ively which means the correlation is strong. It implies that the
roposed model has very less uncertainty that has a negligible
mpact on the performance without uncertainty. This condition
ill be evaluated further when noisy data are used in future
esearches.

. Results and discussion

The evaluation of the proposed OCNN–HMLSTM is performed
sing MATLAB R2016b under a controlled environment. Experi-
ents are performed to compare the efficiency of OCNN–HMLSTM
n the three datasets individually. The comparisons are made
gainst the existing SVM [10], NN [50], ELM [17], CNN [24],
STM [26], Conv-LSTM [29], DNN [30] and MSCNN [31] based
DS models from literature. Besides, the individual performance
f OCNN and HMLSTM for the intrusion detection problem is also
valuated separately and compared with the proposed unified
odel of OCNN–HMLSTM.

.1. Evaluation metrics

The proposed OCNN–HMLSTM is evaluated using accuracy,
recision, recall, F-measure, false Positive rate (FPR), false-
egative rate (FNR), MCC and Kappa coefficient metrics.

ccuracy =
(TP + TN)

(TP + TN + FP + FN)
(14)

recision =
TP

(TP + FP)
(15)

Recall =
TP

(TP + FN)
(16)

−measure = 2×
Precision× Recall

(17)

Precision+ Recall

8

Table 6
Performance of OCNN–HMLSTM on NSL-KDD.
Class Accuracy (%) FPR (%) FNR (%)

Normal 93.61 ± 0.07 3.87 ± 0.01 5.23 ± 0.03
DoS 90.20 ± 0.03 8.61 ± 0.03 4.45 ± 0.02
Probe 89.10 ± 0.05 7.34 ± 0.02 6.21 ± 0.06
R2L 90.66 ± 0.08 9.15 ± 0.05 6.66 ± 0.03
U2R 91.11 ± 0.07 9.92 ± 0.02 9.87 ± 0.04

FPR =
FP

(FP + TN)
(18)

FNR =
FN

(FN + TP)
(19)

Mathew Correlation Coefficient (MCC) varies between −1 and
, where the best binary classifier obtains positive 1 and worst
lassifier obtains negative 1.It is computed as

CC =
(TP × TN)− (FP × FN)

√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

(20)

Kappa coefficient is used to check whether the classifier can
rocess imbalanced data classes successfully. It is calculated as

=
Obsolute− Expect

1− Expect
(21)

Here Obsolute = Accuracy and Expect = A+B
(TP+TN+FP+FN) . The

alues of A and B can be obtained as A = (TP+FN)(TP+FP)
(TP+TN+FP+FN) and

=
(FP+TN)(FN+TN)
(TP+TN+FP+FN) .

Kappa coefficient values ≤ 0 denote worst classifier, (0–0.2)
denote slight promise, (0.21–0.4) as reasonable, (0.41–0.60) as
modest, (0.61–0.80) as significant and (0.81–1) as nearly perfect
classifier.

4.2. NSL-KDD evaluation

The evaluation of the OCNN–HMLSTM on NSL-KDD has pro-
vided better results. The most prominent measures are accuracy,
FPR and FNR. Table 6 displays the attack recognition outcomes
obtained on the test dataset—KDDTest+.

From Table 6, it can be seen that the OCNN–HMLSTM effec-
tively classifies the intrusions with higher accuracy. The outcomes
demonstrate that the accuracy of detection is improved for almost
all the attacks records and normal records. Likewise, the FPR and
FNR values are also significantly ranged between good numbers.
This result has been obtained when considering 100% of the
testing dataset. Partitioning the test dataset into different parts
such as 10%, 20% ...90% of results are also obtained and shown in
Fig. 5.

Fig. 5(a) shows the classification metrics. 5(b) shows the co-
efficient values and 5(c) shows the FNR and FPR values. It is ap-
parent that for all the parameters, the suggested OCNN–HMLSTM
has achieved significantly good results.

Table 7 shows the evaluation results of the proposed OCNN–
HMLSTM evaluated over the NSL-KDD compared against the ex-
isting SVM [10], NN [50], ELM [17], CNN [24], LSTM [26], Conv-
LSTM [29], DNN [30] and MSCNN [31] based IDS models and the
OCNN only and HMLSTM only IDS models.

From the above table, it is evident that the proposed OCNN–
HMLSTM has comparatively better performance than the existing
models. The proposed model has high values of accuracy, recall
and f-measure and less value of FNR and FPR. Although the SVM
based IDS model has achieved 100% precision and less detec-
tion time of 20.99 s, it has low values for other parameters.
Particularly, the trade-off between FPR and FNR is huge (47.9%
and 1.04%), thus making the model less efficient. LSTM achieved
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able 7
erformance of OCNN–HMLSTM vs. other methods in literature on NSL-KDD dataset.
Methods/Metrics Accuracy (%) Precision (%) Recall (%) F-measure (%) FPR (%) FNR (%) MCC Kappa Training

time (s)
Detection
time (s)

SVM [10] 87.05 100 88.502 87.33 47.9 1.04 0.659 0.9193 4155 20.99
NN [50] 83.67 88.406 86.211 83.28 23.47 33.42 0.3151 0.7844 6790 106.23
ELM [17] 81.33 81.94 84.91 81.95 26.02 56.28 0.6979 0.7747 9865 25.349
CNN [24] 79.67 68.182 83.35 72.508 18.62 19.83 0.6821 0.6282 7756 93.015
LSTM [26] 83 86.77 83.39 87.57 15.03 17.51 0.2174 0.7842 7865 75.46
Conv-LSTM [29] 89.94 80.501 88.87 88.77 11.8 9.95 0.789 0.8334 8123 82.55
DNN [30] 89.33 86.67 92.56 90.67 12.67 11.2 0.8101 0.7567 7655 46.6
MSCNN [31] 88.45 79.89 90.11 88.76 9.94 6.67 0.8080 0.8337 6545 33.34
OCNN only 88.67 84.34 90.12 89.78 11.89 7.89 0.7678 0.8112 5868 32.35
HMLSTM only 87.11 78.89 93.67 88.4 12.2 6.66 0.8110 0.80 4245 30.67
OCNN–HMLSTM 90.67 86.71 95.19 91.46 8.86 5.78 0.8222 0.8633 5118 32.97
Table 8
Performance of OCNN–HMLSTM on ISCX-IDS 2012.
Class Accuracy (%) FPR (%) FNR (%)

Friday 96.46 ± 0.06 9.22 ± 0.03 5.50 ± 0.02
Saturday 95.33 ± 0.08 7.88 ± 0.01 4.67 ± 0.03
Sunday 95.43 ± 0.04 7.76 ± 0.03 4.45 ± 0.03
Monday 96.86 ± 0.06 9.89 ± 0.03 5.67 ± 0.02
Tuesday 91.10 ± 0.05 6.87 ± 0.02 4.88 ± 0.06
Wednesday 93.87 ± 0.07 8.16 ± 0.06 4.16 ± 0.07
Thursday 96.55 ± 0.03 7.67 ± 0.02 8.75 ± 0.04

86.77% precision which is fractionally higher than the proposed
model but does not have better results for the false positives and
detection time. Comparing the individual models of OCNN and
HMLSTM, HMLSTM has performed better; however, on overall
analysis, the proposed unified model outperforms the individual
models. Thus analysing the compared IDS models, it can be stated
that the proposed model has significantly better performance and
has advantages than the other models for the NSL-KDD data.

4.3. ISCX-IDS 2012 evaluation

Table 8 shows the attack detection results obtained on the test
atasets of ISCX-IDS.
9

From Table 8, it can be seen that the OCNN–HMLSTM effec-
tively classifies the intrusions with higher accuracy and low false
values. The outcomes explain that the accuracy of recognition is
improved for almost all the attacks records and normal records.
Likewise, the FPR and FNR values are also significantly ranged be-
tween good numbers. Partitioning the test dataset into different
parts such as 10%, 20%,. . . .90% of results are also obtained and
shown in Fig. 6.

Fig. 6(a) shows the classification metrics. 66(b) shows the
coefficient values and 6(c) shows the FNR and FPR values. For
all the parameters, the suggested OCNN–HMLSTM has achieved
significantly good results. For comparison, Table 9 shows the eval-
uation results of the proposed OCNN–HMLSTM evaluated over the
ISCX-IDS 2012 compared against the existing SVM [10], NN [50],
ELM [17], CNN [24], LSTM [26], Conv-LSTM [29], DNN [30] and
MSCNN [31] based IDS models and the OCNN only and HMLSTM
only IDS models.

From the above table, it is evident that the proposed OCNN–
HMLSTM has comparatively better performance than the existing
models. All the compared models have the highest precision
values. Apart from the FNR and Kappa coefficient, the proposed
model has better results for all other parameters. It has the high-
est accuracy, precision, recall, f-measure and MCC values while
also achieving low values of FPR. Also, the trade-off between FPR
able 9
erformance of OCNN–HMLSTM vs. other methods in literature on ISCX-IDS 2012 dataset.
Methods/Metrics Accuracy (%) Precision (%) Recall (%) F-measure (%) FPR (%) FNR (%) MCC Kappa Training

time (s)
Detection
time (s)

SVM [10] 94.834 100 89.75 97.35 34.7 5.17 0.9188 0.8780 14400 2100
NN [50] 66 100 78.72 79.52 35.4 34.0 0.6277 0.5676 62240 2760
ELM [17] 66.33 100 76.23 79.76 45.1 33.67 0.6286 0.6436 86580 2400
CNN [24] 93.55 100 87.67 92.84 14.5 18.7 0.9083 0.9718 98768 2456
LSTM [26] 93.33 100 85.45 97.6 12.54 4.67 0.9228 0.9179 112367 2110
Conv-LSTM [29] 95.29 100 91.91 93.17 11.3 6.78 0.9110 0.9056 88970 2433
DNN [30] 95.05 100 92.22 95.66 19.1 4.7 0.9 0.911 79895 1867
MSCNN [31] 94.9 100 91.67 90.88 9.9 4.6 0.897 0.9034 75550 1985
OCNN only 93.56 100 93.34 97.2 8.89 4.95 0.9004 0.889 68455 2080
HMLSTM only 94.99 100 90.75 95.38 8.75 4.58 0.912 0.9182 64780 1756
OCNN–HMLSTM 95.333 100 94.77 97.611 7.84 4.67 0.928 0.9121 54480 1765
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Fig. 6. Performance of OCNN–HMLSTM on ISCX-IDS 2012.
Fig. 7. Performance of OCNN–HMLSTM on UNSWNB-15.
able 10
erformance of OCNN–HMLSTM on UNSWNB-15.
Class Accuracy (%) FPR (%) FNR (%)

Normal 96.33 ± 0.04 5.87 ± 0.04 5.67 ± 0.02
Reconnaissance 96.43 ± 0.06 8.76 ± 0.05 3.67 ± 0.01
Backdoor 98.86 ± 0.09 7.66 ± 0.03 4.45 ± 0.04
Worms 94.10 ± 0.1 7.76 ± 0.05 3.48 ± 0.05
Analysis 97.87 ± 0.03 5.54 ± 0.02 3.33 ± 0.04
Shellcode 98.55 ± 0.05 4.67 ± 0.03 6.67 ± 0.04
Generic 89.76 ± 0.06 9.76 ± 0.05 5.52 ± 0.04
Fuzzers 93.67 ± 0.07 8.20 ± 0.06 4.87 ± 0.03
Dos 96.54 ± 0.04 6.76 ± 0.02 3.45 ± 0.02
Exploits 92.25 ± 0.07 5.45 ± 0.04 6.23 ± 0.03

and FNR is aptly balanced in the proposed unified model. Al-
though the individual HMLSTM achieved low detection time, the
proposed unified model is only fractionally higher. CNN achieved
a high Kappa coefficient value indicating its superior classification
ability, but still underperformed in comparison with the OCNN–
HMLSTM model. Thus, it can be stated that the proposed model
has significantly better performance and has advantages than the
other models for the ISCX-IDS 2012 data.

4.4. UNSWNB-15 evaluations

Table 10 indicates the attack detection outcomes obtained on
he test data of UNSWNB-15. These results are obtained on the
nbalanced test dataset.
From Table 10, it can be seen that the OCNN–HMLSTM effec-

ively classifies the intrusions with higher accuracy and low false
alues. The outcomes exemplify that the accuracy of detection is
uperior for almost all the attacks records and normal records.
ikewise, the FPR and FNR values are also significantly ranged
etween good numbers. Partitioning the test dataset into differ-
nt parts such as 10%, 20%,. . . .90% of results are also obtained and
hown in Fig. 7.
10
Fig. 7(a) shows the classification metrics. 7(b) shows the co-
efficient values and 7(c) shows the FNR and FPR values. The
outcomes are noticeable that for all the metrics the proposed
OCNN–HMLSTM has achieved significantly good results. For com-
parison, Table 11 shows the evaluation results of the proposed
OCNN–HMLSTM evaluated over the UNSWNB-15 dataset com-
pared against the existing SVM [10], NN [50], ELM [17], CNN [24],
LSTM [26], Conv-LSTM [29], DNN [30] and MSCNN [31] based IDS
models and the OCNN only and HMLSTM only IDS models.

From the above table, it is apparent that the proposed OCNN–
HMLSTM has comparatively better performance than the existing
models. All the compared models have the highest precision
values of 100%. Apart from recall, FPR, detection time and Kappa
coefficient, the proposed model has better results for all other
parameters. It has the highest accuracy, precision, f-measure and
MCC values while also achieving low values of FNR. Although the
individual CNN achieved low FPR and HMLSTM achieved high
recall, the proposed unified model has better advantages than
them. CNN achieved a high Kappa coefficient value while SVM
consumed less detection time. This indicates that these models
are well suited for the UNSWNB-15 dataset, but still comparing
the other properties of the OCNN–HMLSTM model, it shows the
proposed model would outperform those models in terms of
accuracy, precision, f-measure and FNR. Even the detection time
is considerably low considering the complexities of the proposed
unified model and the complex dataset. Thus, it can be stated
that the proposed model is efficient than the other models for
the UNSWNB-15 data.

4.5. Effect of parameter variation in OCNN– HMLSTM

The individual attack detection performance of the OCNN–
HMLSTM is significantly good and they outperform the existing
models in terms of most of the assessment metrics. With the vari-
ation of parameters of OCNN–HMLSTM, the performance varies
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able 11
erformance of OCNN–HMLSTM vs. other methods in literature on UNSWNB-15 dataset.
Methods/Metrics Accuracy (%) Precision (%) Recall (%) F-measure (%) FPR (%) FNR (%) MCC Kappa Training

time (s)
Detection
time (s)

SVM [10] 89.926 100 89.978 83.231 35.2 30.07 0.7939 0.711 12577 366.6
NN [50] 66.33 100 77.48 79.76 33.5 33.67 0.5742 0.610 36869 724.8
ELM [17] 66.33 100 76.84 79.759 47.12 33.67 0.6563 0.5725 24300 456.92
CNN [24] 92.85 100 90.11 94.25 17.8 17.45 0.938 0.9484 39650 622.7
LSTM [26] 93 100 91.24 96.373 11.55 7.0 0.8707 0.9269 44500 633.34
Conv-LSTM [29] 94.75 100 93.5 94.78 9.8 4.45 0.8976 0.897 48600 542
DNN [30] 95.08 100 94.8 95.67 11.7 6.67 0.9190 0.9 34550 480.75
MSCNN [31] 95.6 100 92.1 96.7 7.56 5.22 0.933 0.9389 36750 512.5
OCNN only 94.67 100 95 97.51 5.03 4.12 0.9005 0.91 32180 444.67
HMLSTM only 96.22 100 96.2 98.05 6.75 3.69 0.9378 0.8711 31900 423.44
OCNN–HMLSTM 96.334 100 95.87 98.132 5.87 3.67 0.9489 0.8917 30665 475.88
Table 12
Effect of parameter variation in OCNN–HMLSTM.
Parameter variation/Metrics Accuracy (%) Precision (%) Recall (%) F-measure (%) FPR (%) FNR (%) Training time (s)

Hidden nodes = 20, learning rate = 0.01 90.1 86.23 94.97 91.23 8.9 6.1 4115
Hidden nodes = 20, learning rate = 0.1 90.3 85.99 95.1 91.23 8.91 5.98 4553
Hidden nodes = 20, learning rate = 0.5 90.28 86.34 95.08 91.23 8.95 6.05 3900
Hidden nodes = 60, learning rate = 0.01 90.13 86.31 95.17 91.36 8.97 6.01 4946
Hidden nodes = 60, learning rate = 0.1 90.26 86.67 95.14 91.4 8.97 5.89 5356
Hidden nodes = 60, learning rate = 0.5 90.44 86.45 95.18 91.1 8.94 5.93 4871
Hidden nodes = 80, learning rate = 0.01 90.41 86.21 95.09 91.33 8.91 5.8 4557
Hidden nodes = 80, learning rate = 0.1 90.67 86.71 95.19 91.46 8.86 5.78 5118
Hidden nodes = 80, learning rate = 0.5 9.55 86.7 95.09 91.45 8.96 5.81 4189
Hidden nodes = 120, learning rate = 0.01 90.39 86.71 95.03 91.4 8.97 5.93 5045
Hidden nodes = 120, learning rate = 0.1 90.61 86.26 95.07 91.38 8.99 5.95 5456
Hidden nodes = 120, learning rate = 0.5 90.64 86.43 95.11 91.44 8.98 5.82 5732
a
W
S
V
t

D

c
t

R

significantly. The effect of varying each parameter is demon-
strated briefly in this section. Two parameters namely hidden
nodes and learning rate is varied to obtain differing results for
the proposed unified model. The MCC and Kappa coefficient pa-
rameters are not considered in this section since the variation of
these parameters is very minimal. The NSL-KDD dataset is used
for this evaluation and the obtained results are shown in Table 12.
The hidden nodes are varied from 20 to 120 while the learning
rate is set from 0.01 to 0.5.

From Table 12, it is evident that the performance of OCNN–
MLSTM has been comparatively good when the number of
idden nodes = 80 and learning rate = 0.1. Although the training
ime is not low, it is even not too high. The performance results
re also varied only by a small margin, thus the comparative per-
ormance of the proposed OCNN–HMLSTM is stable. The accuracy
alues have been consistently been around 90%, thus setting the
hreshold for a good/almost perfect classifier. These results illus-
rate that the proposed OCNN–HMLSTM, through the significantly
dvanced learning of both spatial and time features of network
raffic data, ensures superior intrusion detection than most exist-
ng models. Also, the evaluation of three datasets depicts that this
odel is supportive of different network traffic data.

. Conclusion

An efficient intrusion detection model has been developed in
his paper using the proposed unified DL approach of OCNN–
MLSTM. This model does not need separate feature engineering
echniques as CNN and LSTM in the unified approach performs
he feature extraction process. The proposed OCNN extracts the
patial features while the HMLSTM extracts the temporal features
nd classifies the network data. The performance of this model
as been evaluated over NSL-KDD, ISCX-IDS and UNSWNB15.
he outcomes justified that the OCNN–HMLSTM model achieved
mproved intrusion detection in all three datasets with effec-
ive detection of multiple attacks. It increased the accuracy and

educes the FPR and FNR values significantly. The classification
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is also effective with higher positive values of MCC and Kappa
coefficients. It is concluded that the OCNN–HMLSTM based IDS
model is effective for intrusion detection through the automatic
learning of spatial–temporal features to outperform the existing
IDS models.

The uncertainty evaluation of the proposed unified model
has shown it has less uncertainty that has an almost negligi-
ble impact on the performance. However, it may not stand the
same when considering the other datasets where the training
data is not proper. The proposed approach will be further eval-
uated in the future to adapt to other public intrusion detection
datasets with uncertainty. There are some works in literature
studies that have achieved higher detection accuracy than the
OCNN–HMLSTMmodel for NSL-KDD data through optimal feature
selection. This direction will also be investigated. Moreover, in
the real world, the intrusions are very less compared to the
normal records. This difference in malicious traffic records will
be examined to improve the IDS model.
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